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Abstract
Oil and gas pipe networks play an important role in ensuring the
downstream energy supply as they transport about 60% of oil and gas.
To guarantee the safe and stable operation of pipelines during the
scheduling horizon, it is necessary to make a reasonable schedule.
During the past two decades, the pipeline scheduling problem has been
widely studied in the world. This chapter conducts quantitative analysis
and visual research on related literature. Through the review of the
existing articles, the research framework of pipeline scheduling
problem is constructed, and their research defects and trends are also
analyzed. The aim of this chapter is to provide a comprehensive
understanding of pipeline scheduling as well as some directions and
inspiration for the future research.

1.1	 Pipeline	Scheduling	Content
Among multiple transportation modes, pipelines are the most effective
mode for transporting large amounts of oil and gas resources over long
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distances because they have the advantages of low operating costs, high
reliability, low environmental pollution, and less susceptibility to
severe weather [1]. The advancement of pipeline scheduling research is
closely related to the development of pipelines. The total length of
pipelines in the world will continue to increase year by year, reaching a
total of 201.9 × 104 km of oil and gas pipelines by the end of 2020.
Among them, the top three countries are the USA, Russia, and China,
with a total mileage of 72.47 × 104 km, 25.99 × 104 km, and 14.5 × 
104 km, respectively. Liquid pipelines connect locations such as oil
�ields, crude oil depots, re�ineries, and product depots (as shown in
Fig. 1.1), and gas pipelines connect locations such as gas �ields, gas
storage depots, and urban gate stations (as shown in Fig. 1.2). Overall,
oil and gas pipeline networks play an important role in securing
downstream energy supplies, as they transport approximately 60% of
oil and gas. Whether it is natural gas or crude oil and re�ined products,
the different product properties, downstream demand, and other
speci�icities make oil and gas pipelines usually transported in batches,
and this is especially evident in multi-product pipelines [2, 3]. In the
operation and management of oil and gas pipelines, the development of
pipeline scheduling is critical, and the rationality of the schedule will
affect the operational safety of the pipeline and the downstream supply
stability. In production sites, schedulers mainly use manual methods to
make plans, which requires a high level of professionalism and rich
working experience of schedulers. Certainly, the scheduling of gas
pipelines and liquid pipelines often differs greatly due to the different
physical and chemical properties and uses of the media transported in
the pipelines.

Fig.	1.1  Liquid piping system structure schematic diagram



Fig.	1.2  Gas pipeline system structure schematic diagram

1.1.1	 Gas	Pipeline	Network
According to the stage production characteristics, natural gas pipeline
network scheduling needs to monitor and master the dynamic changes
of upstream and downstream users at any time during the
implementation process in accordance with the sales plan of the
enterprise, and centrally control the key links in the gas transmission
process, so that the upstream, middle, and downstream resources are
steadily scheduling and connected in a consistent manner, thus
satisfying the gas demand of each downstream user while ensuring the
safe and stable operation of the pipeline. Therefore, natural gas
scheduling must control all aspects of production operation in a
comprehensive, dynamic, and timely manner and achieve the
production purpose of uni�ied organization and uni�ied command by
controlling and coordinating all aspects of production operation in a
systematic, rational, and dynamic manner, so as to ensure the safe,
ef�icient, and low-consumption completion of transmission tasks [4].
The gas pipeline operation optimization solves this problem by
reasonably formulating the gas transmission plan and its operation
optimization scheme (including optimal scheduling plan, determination
of steady-state optimal conditions, optimal control of non-steady-state
conditions, etc.) to meet the given conditions, such as the structure of
the pipeline network, the equipment con�iguration and performance of
the pressure stations, the supply conditions of each gas source, the
demand gas quantity of each customer, etc., so as to achieve or
approach the optimal criteria requirements. The optimality criterion is



a criterion for evaluating the merits of the operation scheme, which is
determined according to the purpose of operation optimization. In
most cases, the optimal criterion is the lowest operational energy
consumption of the system. Therefore, for the gas transmission system,
it is to make it complete the given gas transmission task within the
speci�ied period while operating with the lowest energy consumption,
reduce the mismatch at low transmission volumes, and reduce or even
eliminate the throttling losses.

1.1.2	 Oil	Pipeline	Network
The scheduling of crude oil pipelines usually starts from port and
involves the stages of oil unloading, storage, transmission, and
reprocessing, covering multiple ports, tank storage areas, pipelines, and
re�ineries [5]. Meanwhile, considering the large differences in the
nature of crude oil from different import sources, the scheduling
problem of crude oil pipeline network makes reasonable arrangements
for when and under what conditions to transport crude oil with
different condensation points and how to coordinate the operation of
pipelines within the network. In the crude oil pipeline network
scheduling system, the scheduling of oil depot storage tanks cannot be
ignored, and each depot distributes crude oil according to the re�ining
demand of the downstream re�ineries. Given that the distance between
each depot and the re�inery and the transportation conditions in the
area where the re�inery is located vary, it makes the same re�inery
choose different sources of oil products. At the same time, the total
distribution volume of a depot will be limited by its inventory and
turnover factor, and it may happen that a certain depot cannot meet the
oil supply demand of the neighboring re�ineries and thus needs oil from
a distant depot to supplement.

As a bridge connecting upstream resources and downstream
product consumption markets, multi-product pipelines are mainly
composed of head stations, pump stations, delivery stations, injection
stations, pipe sections, and other auxiliary related equipment, which
are used to complete the injection, delivery, and transfer of multiple oil
products. For multi-product pipelines, its scheduling plan is formulated
to clarify the type, quantity, time window, and product availability of oil
demand at each station and provide a basis for schedulers to prepare a



reasonable scheduling plan. In the process of scheduling plan
preparation, it is necessary to determine the operation management
method, batch of products, batch order, start time and end time of
delivery, �low rate value, pump start/stop scheme, and control and
handling of oil mixing. Its main production equipment are pump and
prime mover set and its auxiliary and control system, oil mixing
detection device, pipe cleaner receiving and sending device, �iltration
device, metering calibration system, oil storage tank, pressure
regulation, hydraulic drainage device, etc. At present, multi-product
pipelines generally adopt normal temperature and closed transmission,
when the pressure and �low rate in the pipeline change, it will have an
impact on the operation of the whole pipeline system. Most multi-
product pipelines have multiple branches and multiple outlets to meet
the demand for oil delivery to cities along and near the pipeline route.
Some pipelines may also have multiple inlets (injection station or dual
station) and receive oil from multiple re�ineries. Once delivered or
injected at any station along the pipeline route, the downstream �low
rate may change. Multi-product pipelines transport multiple oil
products with different oil properties. When different products are
transported next to each other, oil mixing will inevitably occur between
batches, and the tracking of oil mixing section and control of oil mixing
volume is the key to optimal operation and management of multi-
product pipelines, especially for pipelines laid in areas with complex
terrain and large elevation differences.

In the case of a multi-product pipeline, an unreasonable batch
sequence and injection volume during the planning process can lead to
increased pollution from adjacent products being transported through
the pipeline, which is a serious accident for actual production. At the
same time, deviations in delivery times and quantities may lead to
increased inventory costs or shortages of products in the warehouse.
With the development of oil and gas pipelines, their topology is
becoming more and more complex, the number of transported product
batches is increasing, and the operating technology is becoming more
�lexible, which makes pipeline scheduling tends to be more dif�icult.
The development of scheduling schemes through experience no longer
meets the needs of today's pipeline system development. It has been a
great concern to develop a reasonable pipeline scheduling plan that can



meet the market demand and also ensure the safety and economy of
pipeline operation.

1.2	 Research	Status
1.2.1	 Optimization	Model	of	Pipeline	Network	Scheduling
For oil and gas pipeline networks scheduling optimization problem, the
key to establish the mathematical model is to determine the
optimization objectives and constraints to be considered; moreover,
both objectives and constraints will change with the actual needs of the
project.

1.2.1.1	 Gas	Pipeline	Network
For natural gas transmission pipelines, the scheduling models can be
classi�ied into the following types depending on the optimization
objectives [6].
A.

Lowest operational energy consumption. Compressor energy costs
account for up to 50% of the operating and management costs of
natural gas pipelines (networks), and there are still problems in the
operation of pipelines (networks), such as unreasonable
compressor start and stop, and reliance on manual experience for
network �low distribution. In order to reduce the operating cost of
natural gas pipeline network, an optimization model is often
established with the objective function of minimizing the total
energy consumption cost of the compressor for the whole line, and
the pressure or �low control value of the compressor is determined
according to the compressor power equation [7].

 

B. Maximum return on pipeline network operation. In the
optimization of natural gas pipeline network with integrated
production and sales, the optimization model is established with
the objective function of maximizing the total revenue from the
operation of the whole line, taking into account the purchase price
of gas �ields, the energy cost of pipeline transmission, and the price
of gas sold by customers. Usually, the larger the transmission
volume, the larger the revenue from gas sales, but also the larger
the transmission energy consumption, so operators need to �ind
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the optimal transmission plan to achieve the maximum economic
return. However, for independent pipeline companies, the
midstream transportation of natural gas pipelines is separated
from the upstream and downstream production and sales, so the
revenue model for pipeline network operation does not need to
consider the �ield purchase price and the customer sales price. The
network operator needs to balance the revenue from gas
transmission (instead of revenue from gas sales) and energy
consumption to �ind the optimal gas transmission plan.

C.
Maximum pipeline capacity. In order to fully utilize the capacity of
the existing gas pipeline (network), an optimization model is often
developed with the maximum total gas transmission capacity of the
gas pipeline network as the objective function. The model needs to
consider the topology of the pipeline network; pressure and �low
constraints of the pipe section; pressure and �low constraints of the
injection and delivery nodes; compressor operation and other
constraints to determine the optimal injection (delivery) volume of
each injection and delivery node.

 

In the process of optimizing the natural gas pipeline scheduling
problem, to determine the scheduling plan, it is necessary to consider
several constraints such as the amount of dispatchable resources,
demand of downstream users, and technology of natural gas pipeline
network. The amount of natural gas resources entering the pipeline
network in a limited period of time is constrained by production or
processing capacity of gas wells, gathering stations, and puri�ication
plants due to the characteristics of natural gas extraction. At the same
time, the pressure in the pipeline (or the total standard volume of
natural gas) is only allowed to vary within a certain range due to the
limitations of the process technology; in addition, the downstream
users of natural gas need to meet certain requirements for the volume
and pressure of gas delivered by the pipeline network due to their own
needs, so the pressure and volume of gas delivered by the pipeline
network cannot be lower than a certain limit; in order to meet the
strength requirements of the pipeline during the transmission process,



the pressure of gas delivered by the pipeline cannot be higher than a
certain value.

1.2.1.2	 Oil	Pipeline	Network
The multi-product pipeline network scheduling model can be classi�ied
into the following types according to the different optimization
objectives [8–10].
A.

Lowest operational energy consumption. In the process of oil batch
transportation, both pumping station characteristics and pipeline
characteristics will change signi�icantly, thus causing changes in
the operating point of the pumping station-pipeline system. At this
point, the goal of the scheduler is to provide the optimal operating
scheme for all pump stations along the entire line during the entire
scheduling cycle on the basis of meeting the delivery volume. The
entire program includes the opening and closing times of the
equipment at each station along the pipeline, and speci�ic speed
values are provided for the adjustable speed pumps to ensure that
the operating program meets the hydraulic and �low constraints
and that the energy consumption of the pipeline operation is
minimized.

 

B.
Maximize return. According to the different sales prices of oil
products and customer demand, establish the target revenue
maximization objective function, calculate the difference between
the product supply and energy consumption cost of the pipeline
network. In order to obtain the maximum economic bene�it, the
pipeline network system needs to consider the cost of pump power
consumption, as well as a comprehensive consideration of factors
such as oil sources, coordination between delivery station depot
inventories and the connection of each pipeline delivery batch.

 

C. Minimal download deviation. Since the oil demand is proposed by
each delivery station individually, the actual situation of pipeline
operation is not considered when formulating, so the
reasonableness of the plan cannot be guaranteed. If the oil demand
of each station is set as an equation constraint, it may lead to the
contradiction between model constraints. Part of the study takes
the minimum deviation of each station from the actual delivery

 



the minimum deviation of each station from the actual delivery
quantity of each oil product plan as the objective function,
linearizes the objective function by introducing arti�icial relaxation
variables and arti�icial tightening variables, and establishes the
corresponding linear programming (LP) model.

D.
Minimal oil mixing loss. In the process of multi-product pipeline
sequential delivery, adjacent batches will inevitably form mixed oil
segments under the effect of convection and turbulent diffusion.
The presence of blending sections leads to a decrease in the
amount of quali�ied product, which needs to be treated by
additional processes, such as blending or distillation. Therefore,
tracking of the blending section and control of the blending
quantity is an important part of pipeline transportation that cannot
be ignored.

 

E.
Minimal deviation of delivery time window. For commercial multi-
product pipeline serving the downstream market, the pipeline
scheduling optimization model with the objective of minimum
demand time window deviation can obtain a scheduling plan that
better matches the demand time window proposed by the user and
is more in line with the actual situation when constraints such as
�low constraints, batch constraints, and demand time window
constraints are considered.

 

For crude oil pipelines, the common optimization objectives are
more similar to those for multi-product pipelines, including minimizing
the number of switching between high and low freezing point crude oil
transfers in the same pipeline, minimizing operating costs, maximizing
return, and minimizing the delivery time deviation. It is worth noting
that crude oil pipeline costs are different from those of multi-product
pipelines, such as the fees paid by tankers to ports according to the
length of their berthing time, the switching costs incurred when
unloading crude oil to different port storage tanks, and the switching
costs incurred when distillation towers need to switch between
multiple supply tanks to feed them during re�ining. At the same time,
there is a great difference in the �low pattern of crude oil transported in
the pipe with different properties, for example, crude oil with high



freezing point needs to be transported with heat, while crude oil with
low freezing point can be transported at room temperature.

During establishing the scheduling model of the liquid pipeline
network, it is also necessary to consider the constraints caused by the
limitations of the pipeline system equipment and the operating process
requirements. The �irst category is the �low constraints including
injection �low, delivery �low, and pipe section �low, where injection �low
and pipe section �low are mainly determined by the characteristics of
centrifugal pumps at stations and the lower limit of mixing �low, and
download �low is determined by the operating range of �low meters at
delivery stations. The second category is pressure constraint, which
mainly refers to the pressure limit of the whole line and key nodes
(pumping stations, high points, etc.), and its interaction with �low
control. The third category is the batch shipment constraint, in a crude
oil or multi-product pipeline scheduling model with known time node
sequencing, where the forward length of a batch head in a time window
depends on the total number of downloads from all stations after it
[11]. Usually, an initial scheduling plan can be developed based on the
above three types of constraints. However, as the scheduling concept
continues to develop in the direction of meticulous, digital, and
intelligent, the plans solved by the above models often have problems
such as large �low �luctuations, frequent pump starts and stops, and
inconvenient management, thus not serving the actual needs of the site
well. Therefore, for different pipeline models, different additional
constraints need to be considered, such as the problem of oil mixing
between adjacent batches. Certainly, the process of crude oil pipeline
scheduling model establishment also requires additional consideration
of port berth constraints, depot operation constraints, tank capacity
constraints, etc. [12, 13].

In addition, it is also necessary to consider which time and volume
expressions are used to describe the transportation process of liquid
batches in the pipeline. According to the different time and volume
expressions, they can be divided into the discrete time and volume-
based model (RR model for short) proposed by Rejowski, and the
continuous time and volume model (CC model for short) �irst proposed
by Cafaro. In the RR model, the scheduling period is discretized into a
number of equally spaced time steps according to the speci�ied time



step, and the start and end time of each time step are known. And each
pipe section along the pipeline is discretized into a number of micro-
element segments according to the speci�ied volume step, and each
micro-element segment is required to contain only one oil product at
each time. The CC model selects the starting and ending moments of
each batch at the pipeline start point as the time nodes and discretizes
the scheduling period into several time steps. Since the start and end
moments of each batch at the pipeline start input are decision
variables, the start and end moments of each time step are also decision
variables.

1.2.2	 Solution	Algorithms
Regarding the optimization problem of oil and gas pipeline scheduling,
there are �ive main solution strategies as follows.
A.

Establish a complete optimization model and solve the model
directly by using classical optimization methods (such as simplex
method, cut-plane method, branch-and-bound method, Newton
iteration method, dynamic programming) or commercial
optimization solvers (such as CPLEX, Gurobi, etc.) [14]. Among
them, dynamic programming is a common method to solve the
scheduling optimization problem of branching natural gas pipeline
networks [15]. The advantage of classical optimization methods is
that the global optimality of the solution is guaranteed, but this
exact solution method with global search can also make the time
and space complexity of the solution increase signi�icantly. For
example, the scheduling model can suffer from dimensional
catastrophe when there are large-scale integer variables in the
model, and then it is impossible to �ind a feasible solution in
polynomial time. Therefore, for multivariate scheduling, a single
mathematical planning model often cannot cover all the factors and
has problems such as large solution space and computational
dif�iculties.

 

B. Establish a complete optimization model and solve the model in
two stages: The �irst stage is model pre-processing, speci�ically by
using heuristic methods such as genetic algorithm, ant colony
algorithm, and simulated annealing algorithm to determine the
values of some variables in the model such as determining the

 



values of some variables in the model, such as determining the

order of oil inject at the starting point of the pipeline through pre-
processing; the second stage is solving the pre-processed model
using classical optimization methods. In the �ield of oil and gas
pipeline network scheduling, heuristic algorithms are proposed to
greatly reduce the time required to solve the scheduling plan. In
the solution process, these two stages can be completed either
sequentially and at once or by coupling [16]. The research results
show that the hybrid heuristic method is effective for solving the
mathematical basis problems such as batch sequencing nonlinear
problems, hydraulic scheduling nonlinear coupling problems, and
the ef�iciency of large-scale model solving. However, the use of this
method inevitably leads to problems such as poor optimality of
solution results and poor generalizability of the method. Therefore,
the method is less practical for scheduling problems that are more
sensitive to the objective function and for scheduling problems
with a special pipeline structure.

C.
Instead of directly establishing a strict mathematical model for the
problem under study, the original problem is solved directly using
heuristic methods or intelligent algorithms oriented to the
optimization objectives and constraints [14, 17].

 

D.
The decomposition strategy is used to decompose the original
problem into several subproblems, establish a mathematical model
for each subproblem, and use classical optimization methods or
commercial optimization solvers to solve each submodel [18, 19].

 

E.
Decomposition strategy is used to decompose the original problem
into several subproblems, model some of them, and solve them
using classical optimization methods or commercial optimization
solvers, while the other subproblems are solved directly using
heuristic methods or intelligent algorithms [20].

 

The scheduling results derived from the initial research methods
focusing on mathematical programming and heuristic algorithms for
scheduling problems were usually not satisfactory enough to solve
practical scheduling problems. With the establishment and



development of various related disciplines and optimization
techniques, many new means and methods have emerged in the
scheduling �ield, such as various scheduling methods based on deep
learning and self-learning. The emergence of these methods has
enriched the means of solving scheduling problems and led to the
development of research on scheduling problems in a diversi�ied
direction. At present, a variety of methods have been applied to solving
scheduling problems of large-scale and complex systems.

1.3	 Conclusion
1.3.1	 General	Situation
In recent years, although many countries and regions have started to
develop renewable energy sources, this has led to the replacement of
some fossil energy sources by renewable energy sources and a gradual
increase in the proportion of the world’s energy consumption.
However, according to the International Energy Agency (IEA), oil and
natural gas will still dominate the future energy consumption [21]. It
can be inferred from this that the rational arrangement of oil and gas
resources remains the focus of pipeline construction.

Currently, the available results lack a comprehensive review from
the perspective of the development of pipeline scheduling problems. In
this section, a bibliometric approach is used for the case of multi-
product pipelines, and the research shortcomings and trends are
analyzed to provide an idea of some directions and inspirations for
future research on pipeline scheduling. We selected Web of Science
(WOS) and China National Knowledge Infrastructure (CNKI) as data
sources and counted the number of articles related to the scheduling of
multi-product pipelines in the above two databases, and the results are
shown in Fig. 1.3. From 2000 to March 2022, 250 articles have been
published cumulatively, and the research fervor of them still remains at
a high level. Furthermore, the statistics for the types of articles in the
area of multi-product pipeline scheduling and the journals in which
they were published are shown in Fig. 1.4. For each area in the �igure,
the number above represents the number of published articles and the
number below represents the percentage. As can be seen in Fig. 1.4, the
largest number of research articles, 72%, and the smallest number of



review articles, 3%, are published. Also, we further counted the
journals that published research articles and review articles. It can be
seen that articles on multi-product pipeline scheduling are mainly
published in journals of petroleum, chemical engineering, and
operations research, among which Computer and Chemical
Engineering, Oil and Gas Storage and Transportation, and Industrial &
Engineering Chemistry Research have the largest number of articles in
this �ield, accounting for 17%, 14%, and 12%, respectively [22].

Fig.	1.3  Cumulative publication number of articles related to multi-product pipeline scheduling



Fig.	1.4  Types of articles and journals related to multi-product pipeline scheduling

Next, we analyzed the publishing institutions of the collected
articles, and it can be seen that the main countries studying this issue
include Argentina, Brazil, China, Finland, Iran, Portugal, Spain, and the
USA. Most of the researchers focus on the short-term scheduling of
small-scale pipeline systems, while some extend their studies to the
long-term scheduling of small-scale pipeline systems or the short-term
scheduling of large-scale pipeline systems.

The literature collected above was further analyzed to summarize
the research framework developed in the past, as shown in Fig. 1.5 [22].
First, the scheduling model of the pipeline needs to be determined. The
scheduling models of pipelines can be divided into deterministic
scheduling and scheduling under uncertain environments [23, 24]. If
different models are chosen, the model structure and decision variables
involved in the scheduling model are different (see Sect. 1.1.2). After
the model is selected, the object of study, such as the topology of the
pipeline, operational constraints, and scheduling accuracy, needs to be
determined, and then a suitable modeling method should be selected to
build the scheduling model (see Sect. 1.2.1) [19, 25]. Finally, a suitable
solution strategy should be selected according to the model structure
(see Sect. 1.2.2).



Fig.	1.5  Research framework of multi-product pipeline scheduling

1.3.2	 Future	Development	Directions
As the above example of multi-product pipeline scheduling literature
analysis, based on the comparison of papers related to oil and gas
pipeline network scheduling optimization, some suggestions are made
for future research.
A. As a link between upstream and downstream liquid pipelines, dual

depot (station) will play an important role in the operation of
crude oil or multi-product pipeline networks. Currently, most
existing studies focus on modeling methods and solution strategies
for scheduling pipeline networks with complex structures. They
only consider the inventory management of dual depot, or setting
up different centrifugal pumps and delivery �lows for speci�ic
products, but ignore the impact of injecting and delivering
operations of storage tanks on scheduling. Therefore, there is a
need for pipeline network scheduling studies that consider tank
operation techniques for dual depot. As for the natural gas pipeline
network, it is also necessary to combine the injection and
extraction of gas storage and utilization of line-pack gas with the
scheduling of the pipeline network to play a better peak regulation
effect.

 



B.
The improvement of interconnection between pipelines has
intensi�ied the dif�iculty of pipeline network scheduling. At present,
most effective scheduling methods are applicable to small-scale
pipeline networks and cannot meet the timeliness requirements of
large-scale pipeline network scheduling. Therefore, an ef�icient
solving method based on machine learning can be developed in
conjunction with the historical scheduling of pipelines, so as to
realize the rapid preparation of large-scale pipeline network
scheduling.

 

C.
At present, the existing research mainly focuses on static
scheduling, while the research on dynamic scheduling is still in the
preliminary stage and limited to the rolling generation of linear
pipeline summary scheduling. In the future, research on dynamic
scheduling and online scheduling can be further developed. Based
on the historical data of inventory in the depot, the product
demand in the depot can be accurately predicted. At the same time,
combined with real-time data transmitted by supervisory control
and data acquisition (SCADA) systems, dynamic and online
scheduling models can be built and combined with trend forecasts
of product supply and demand. With this model, inventory risk can
be dynamically assessed on a rolling cycle and optimal detailed
schedules can be generated. The method can provide dynamic
forecasting, risk assessment, result feedback, and global
adjustment for the pipeline network and can be a decision-making
tool for intelligent scheduling of oil and gas pipeline networks.

 

D. Oil and gas pipeline systems are highly uncertain, which will make
deterministic scheduling no longer feasible. Considering
robustness in the scheduling model can reduce the risk caused by
uncertainties and the number of scheduling adjustments, so that
scheduling can still meet market requirements within a certain
demand range. However, most of the existing research focuses on
oil and gas supply chain optimization under uncertainties, while
the research on robustness optimization of pipeline scheduling is
focused on pipeline systems with single sources and distribution
centers. There is a need to extend the research to pipeline systems

 



with complex structures by incorporating uncertainty optimization
theory.
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Pipelines with Simultaneous Deliveries to Multiple Offtake Stations,” Industrial	&	Engineering
Chemistry	Research, vol. 51, no. 17, pp. 6145–6165, 2012/05/02 2012, doi: https:// doi. org/ 
10. 1021/ ie202520a.

15. Y.-Z. Meng, R.-R. Chen, and T.-H. Deng, “Two-stage robust optimization of power cost
minimization problem in gunbarrel natural gas networks by approximate dynamic
programming,” Petroleum	Science, 2022/01/13/ 2022, doi: https:// doi. org/ 10. 1016/ j. petsci. 
2021. 09. 048.
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Abstract
In practice, the scheduling of gas and oil pipeline networks is a
continuous and dynamic process with a large number of uncertainties.
Therefore, shorter calculation time and solution quality are always
important indicators to measure the practicability of solution methods,
especially in the real-time and active pipeline scheduling. The
emergence of digital and intelligent technologies makes the data
sensing and decision-making possible to be real-time and continuous.
This chapter summarizes existing research from the perspective of
modeling methods and solution algorithms, so as to provide the
research basis and research direction for intelligent scheduling of
pipeline networks. The modeling methods are mainly divided into
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mathematical programming, generalized disjunctive programming
(GDP), and resource task network (RTN). The solution algorithms
include mathematical programming, heuristic algorithm, metaheuristic
algorithm, dynamic programming algorithm, and data-driven
algorithm.

2.1	 Modeling	Methods
For pipeline scheduling, the most common modeling method at present
is to build a mathematical programming model. By determining the
objective function and constraints, the obtained results can meet the
actual needs, and the optimal solution can be obtained through the
theory of operations research. However, this method has some
shortcomings, such as the dif�iculty of solving when the scale is large
and the dif�iculty of describing the problem in some cases. Therefore,
some scholars have proposed modeling methods of GDP and RTN.

2.1.1	 Mathematical	Programming
2.1.1.1	 Natural	Gas
The optimization of natural gas pipeline network scheduling plan is
divided into two categories of steady state and non-steady state.
Steady-state scheduling optimization refers to the problem under the
condition that the operating conditions of the whole pipeline do not
change with time. But �luctuations in gas consumption, compressor
start and stop, valve adjustment, leakage or rupture of pipelines, etc.,
will cause the pipeline to operate in an unsteady state. In this case, the
operating parameters are highly coupled with time and space. The non-
steady-state operation optimization of natural gas pipeline network
system is to optimize �low rate, pressure, and compressor operating
conditions of each node in the system in real time when the system is in
a non-steady state, so that the pipeline network system is always safe
and operate under high-ef�iciency conditions.

(1)	Steady-state	scheduling
The current dif�iculties in the optimization of steady-state scheduling
plan lie in the complicated topology of the annular gas transmission
network, the uncertainty of gas �low direction, and the changing



distribution of transmission volumes, etc. As a result, non-sequential
dynamic programming (NDP), generalized parsimonious gradient
method, heuristic algorithms, stochastic optimization algorithms,
arti�icial intelligence algorithms, and other methods are frequently
used to separate and simplify pipeline network systems.

The objective of gas network schedule optimization is to discover
the most cost-effective transmission solution by reducing gas
transmission energy consumption while guaranteeing that gas
transmission jobs are completed. Given the pipeline capacity and other
uncontrollable elements, the ideal operation mode, equipment
combination, and operating parameters are required to minimize
energy consumption per unit of time under steady-state conditions,
subject to pipeline operation limitations. The constraints of gas
transmission pipelines steady-state operation include inlet or delivery
gas volume constraints, inlet or delivery gas pressure constraints,
pipeline pressure drop equation constraints, pipeline network node
�low balance constraints, compressor power constraints, compressor
equation constraints, valve equation constraints, etc.

The volume of gas delivered into the gas pipeline is necessarily
in�luenced by production �luctuations at different times at gas
production sites, as well as pressure constraints and requirements for
gas purchased externally by gas operators. Furthermore, due to their
own needs, individual customers have speci�ic requirements for the
volume and pressure of gas supplied to the pipeline network, i.e., the
pressure at the network’s distribution points cannot go below a set
pressure value. Excessive pressure may cause damage to the pipeline
when natural gas enters the pipeline. The total amount of gas entering
the network should equal the total amount of gas exiting the network to
provide a balanced supply of gas across the network. The �low rate of
gas pipeline can be calculated by Eq. 2.1, in which  represents the
mass volume rate value from node  to node  ,  represents the
coef�icient of frictional resistance from node  to node  , and 
represents the elevation coef�icient form node  to node  .

(2.1)



When the �low rate of a centrifugal compressor is decreased to a
speci�ic level, the consequent rotation and detachment process might
result in �luid back�low. The gas pressure in the compressor outlet line
is reduced once back�low occurs, and the compressor outlet pressure
gradually rises with the back�low. The �luid will �low backward when
the pressure reaches a speci�ic level. Centrifugal compressor surge is a
process that repeats itself again and over. If the centrifugal
compressor’s �low rate reaches a particular point, the gas �low rate in
the compressor may exceed the speed of sound, and the �low rate will
not increase again—phenomenon known as centrifugal compressor
stall. The stagnation �low rate is the highest �low rate possible. If the gas
�low of a centrifugal compressor exceeds its hysteresis �low, the
hysteresis phenomenon may occur, resulting in energy waste. The
compressor �low rate must therefore be lower than the stalling �low
rate.

In engineering, compressor characteristic curves are often used to
characterize compressor operation. A quadratic polynomial is used to
simulate each curve on a centrifugal compressor characteristic
diagram, as shown by Eq. 2.2. Equation 2.3 shows that a double
quadratic polynomial can also be used to simulate the centrifugal
compressor characteristic curve. The coef�icients  and 
are based on technical measurement data for a given compressor, �itted
by the least squares method. The contour of the compressor speed

 is given by the implicit Eq. 2.4, in which  represents
the speed of the compressor, and  represents the experimentally
obtained �itting constant.

(2.2)

(2.3)

(2.4)

(2)	Non-steady-state	scheduling



The variables of non-steady-state scheduling optimization for natural
gas pipeline system including the pressure of compressors at each time
and the optimization objective are integration of energy consumption
at each time. The discretization of the time factor in the model
increases the number of model variables signi�icantly, making the
model more dif�icult to solve due to its nonlinear, combinatorial, and
stochastic nature.

The restrictions in the mathematical model for optimizing natural
gas pipeline system dynamic operation differ slightly from those in the
mathematical model for optimizing natural gas pipeline network
steady-state operation. Some of the limitations consider the impact of
time on the constraints. The mathematical equations for the dynamic
operation of natural gas in a pipeline differ signi�icantly from the
mathematical description of its steady-state �low. If no changes in the
temperature of the natural gas along the pipeline are considered, the
dynamic �low of natural gas in the pipeline can be described by the
continuity equation and the equation of motion; if changes in
temperature along the pipeline are considered, the dynamic �low of
natural gas in the pipeline should be described by the continuity
equation, the equation of motion, and the energy equation together.
Equations 2.5 and 2.6 are the continuity equation and momentum
equation, respectively, in which  represents the cross-sectional area
of the pipe,  represents the gas density,  represents time, 
represents the gas �low rate,  represents the gas pressure, 
represents the acceleration of gravity,  represents for location, and 
represents the coef�icient of friction.

(2.5)

(2.6)

Natural gas’s uneven �low in a pipeline is a slow transient process,
unlike that of a liquid, due to its compressible nature. As a result, the
two equations above can be differentiated using a central implicit
differencing method with less time step requirements and without
taking temperature swings into account. Since the time step can be as



long or as short as desired during the simulation, it increases the
simulation’s �lexibility while simultaneously reducing the simulation’s
processing time. The central implicit difference continuity equation, as
well as the momentum equation, is shown by Eqs. 2.7 and 2.8.

(2.7)

(2.8)

2.1.1.2	 Re�ined	Oil
Re�ined oil pipeline scheduling is the process of transporting re�ined oil
from supply to demand, which can be divided into static scheduling and
dynamic scheduling. The static scheduling is based on the injection plan
of injection stations within a certain time interval. According to the
injection time of each batch and pipeline �low rate, the time when each
batch arrives at each delivery station can be obtained, so as to
determine the delivery �low rate and time of each station along the
pipeline for each batch. The dynamic scheduling is to determine the
injection �low rate and time of each batch at injection stations based on
the inventory of injection stations, and the demand volume and time of
delivery stations along the pipeline.

(1)	Static	scheduling
For static scheduling, injection stations must inject re�ined oil
according to predetermined time, and the pipeline must operate in
speci�ic �low rate to ensure that re�ined oil can be delivered on time. In
this way, the delivery time can only be determined by the carriers, and
shippers can’t determine the arrival time of re�ined oil. In the process of
batch transportation, unforeseeable operating conditions will also
affect the delivery time and delivery volume, such as equipment failure
maintenance, the storage capacity of the delivery stations, the supply,
etc. Especially, when customers only purchase re�ined oil that is



urgently needed, it will cause customers to encounter production and
operational problems because delivery time is often in�lexible. This
method is advantageous when shippers only need to track the
individual batches.

Aiming at the problem about optimizing batch schedules of a
re�ined oil pipeline, the established models can be divided into two
types according to the scheduling model time representation
expression, namely discrete and continuous time representation. For a
detailed batch scheduling plan, there are many key time nodes to mark
the operations to be performed. For example, a station starts or stops to
delivery re�ined oil, or a pipeline section stops oil transportation, etc.
Therefore, key time nodes are critical for �ield operators. We can divide
the batch scheduling plan into multiple parts through key time nodes.
Each part corresponds to a time window. The �ield operators can clearly
understand the running status of the pipeline in each time window,
including the delivery �low rate of stations, the transporting status of
pipeline segments, etc.

(a)	Discrete	time	representation
For discrete time representation, the scheduling period is divided into
several time windows of equal or speci�ied length. Magatão et al. [1]
made full use of the advantages of discrete time representation and
used this representation to analyze the pipeline network scheduling
problem between ports and re�ineries. Herrán et al. [2] successfully
solved the problem about tracking of batch interface in the case of
multiple injection stations and distribution stations. However, for
discrete time representation, the model solution results will not be
re�ined enough and lack practicability if the time window is too long.
Conversely, too short a time window will result in a model that is too
large to obtain a feasible solution in an acceptable time. Therefore,
continuous time representation has been extensively studied to solve
the above-mentioned problems.

(b)	Continuous	time	representation
The continuous time representation uses key events as the standard to
select time nodes, such as the time of starting or stopping to delivery, or
the shutdown of a re�ined oil pipeline, etc. So that the model scale can



be reduced as much as possible and the solution ef�iciency can be
improved. Cafaro and Cerdá [3] established a mixed integer linear
programming model based on continuous time representation for a
re�ined oil pipeline with an injection station and multiple distribution
stations. The model takes the minimum sum of the pump energy cost,
the treatment cost of the oil mixture, and the inventory cost of the
re�ined oil depot as the objective function. On this basis, Cafaro and
Cerdá [4] took a branch-shaped re�ined oil pipeline network as the
research object and established a mixed integer linear programming
model based on continuous time representation. The model strictly
tracks batches, allowing products to be injected and distributed at the
same time. However, this model belongs to the rough scheduling model,
and the batch scheduling plan obtained by the model can only provide
the approximate time range of the injection/distribution of products
and cannot determine the detailed operation time in each station. Some
scholars took the single-source multi-sink re�ined oil pipeline as the
research object, carried out a series of studies on the careful scheduling
of the re�ined oil pipeline, and obtained the injection/distribution
operation and the speci�ic batch injection/ distribution volume of each
station in each time period. Haoran Zhang et al. [5, 6] studied the batch
arrival time, the start time of batch download at each station, and the
variable �low operation time of the �irst station as event points. The
original model is converted into time nodes sequencing issue and a
mixed-integer linear programming (MILP) model which is based on
known time node sequence. To improve the solution ef�iciency, a self-
learning approach is proposed based on fuzzy clustering analysis which
can quickly �ind good time sequence. In addition, some scholars have
done some research on rolling scheduling of re�ined oil pipelines.

(2)	Dynamic	scheduling
Dynamic scheduling is suitable for the situation in which shippers have
special requirements on the arrival time of re�ined oil. The method can
supply re�ined oil to the delivery stations within the speci�ied time
interval.

The dynamic scheduling and static scheduling of re�ined oil
pipelines have the same advantages. For example, it is convenient to
track individual batches through a pipeline system. However, dynamic



scheduling has disadvantages. For example, the successful execution of
the scheduling plan depends on whether the re�ined oil is injected
within the speci�ied time. If a certain batch cannot be injected on time,
the injection and delivery time of subsequent batches will change,
making it impossible to meet customers’ demand. At the same time, the
transportation time is also long, and the time for each batch to arrive at
each delivery station is also easy to change. The formulation of the
dynamic re�ined oil pipeline scheduling plan will become more and
more dif�icult in the long-distance re�ined oil pipeline.

In addition, the emergence of cyber-physical systems (CPS) and big
data theory provide new opportunities and challenges for distributing
products actively [7]. Compared to traditional passive scheduling
pattern, the CPS-based one can use big data technology to discover
valuable information in a wealth of data from CPS and forecast
downstream demand accurately. Then the operators can deliver the
predicted products to the nearest delivery point in advance, thus
reducing the transportation time and improving delivery ef�iciency and
customer satisfaction. The key for CPS-based scheduling technology is
to ensure the accuracy of the demand forecasting as well as the
computational ef�iciency of the scheduling optimization method.
Nowadays, there are some mature methods for demand forecasting,
such as autoregressive integrated moving average model (ARIMA),
arti�icial neural network (ANN), support vector machine (SVM), and the
improved methods of the above. While the traditional optimization
methods for pipeline scheduling reveal several defects in face of CPS.
First, experience-based methods mostly apply to the issues with clear
and �ixed boundary conditions, so their optimality degrades obviously
if given the continuous, dynamic, and complex boundary conditions
from CPS. Second, the common solution used in the model-based
methods is the global searching method, the solution ef�iciency of
which drops sharply once the model scale reaches a certain size.
Nowadays, CPS-based scheduling technology has been carried out for
several years in vehicle scheduling, but relative research on pipeline
scheduling is still rare. Unlike vehicle scheduling, operations of pipeline
scheduling are rather complicated, which requires in-depth research.

2.1.2	 Generalized	Disjunctive	Programming	(GDP)



Most scheduling optimization problems can be solved through
constructing mathematical programming models, but solution
ef�iciency of this method will greatly reduce when facing large-scale
problems because it contains large number of binary variables and big-
M constraints, and they will greatly increase the solution domain [8]. In
order to deal with this problem, a framework based on equations and
symbolic logic developed [9] which can convert the mathematical
programming model into GDP model which is constructed by Boolean
variables. Through GDP model, the problem can be expressed clearly
and the large solution domain can be decreased by adopting logical
reasoning. Then, the solution ef�iciency can be greatly improved.
Mostafaei and Castro [10] proposed a GDP model using continuous
time representation for determining the detailed plan of a pipeline with
multi injection stations and delivery stations. In this way, the obtained
plan can be determined in short time and pipeline utilization has been
greatly improved. The model was later extended into a product-centric
model based on GDP [11]. The binary variables in the GDP model are
only one quarter of that in RTN model to be introduced.

2.1.3	 Resource	Task	Network	(RTN)
RTN is a network which contains resource nodes and task nodes. In the
network, resource nodes represent actual objects such as equipment
for processing or storage, and task nodes represent technologies that
can convert one resource into another. Usually, RTN model is relatively
simple, and it can be used for general scheduling systems. In addition,
when applying RTN model into pipeline scheduling problems,
continuous time representation and discrete time representation are
also adopted. For example, Castro [12] proposed a RTN model based on
continuous time representation for a pipeline network. In the problem,
re�ined oil, re�ineries, pipelines, and depots are taken as resource
nodes, while injection and delivery are taken as task nodes. However,
when establishing RTN models for large-scale problems with
complicating operational constraints, the process will be extremely
complex, resulting in poor practicability.

2.2	 Solution	Algorithms



For the models constructed above, many scholars have proposed
corresponding solution algorithms. For example, for mathematical
programming models, mature mathematical programming methods can
be used to solve them directly. Heuristic algorithms or metaheuristic
algorithms can also be used to obtain partial solutions of mathematical
programming models in advance, thereby reducing the dif�iculty of
directly solving models. In addition, with the rapid development of
machine learning, big data is gradually introduced into solving pipeline
scheduling problems to improve solution quality and solution
ef�iciency.

2.2.1	 Mathematical	Programming
Mathematical programming is a method of operational research that
relies on the traditional search for global optimal solution of the
planning algorithm to solve the pipeline scheduling model, in view of
the large-scale scheduling optimization problems, commonly solved by
the professional solving software or solver. The suitable solving
software or solver can reduce the computation time and improve
solution ef�iciency. At present, the popular solving software (solver)
includes Lingo software developed by Lindo Company, XPRESS
software developed by Dash Company, XA software developed by
Stanford University, OSL software developed by IBM Company, CPLEX
software developed by IBM Company, and Gurobi solver developed by
Gurobi Optimization Company, etc. Above solving software or solver
built-in algorithms included simplex algorithm, branch and bound
algorithm, and cutting plane algorithm. The advantage of mathematical
programming is the global optimization of the solution can be
guaranteed. However, the precise solution method of global search
leads to a great increase in the time and space complexity of the
solution. For example, when the model contains large integer variables,
the scheduling model may face the problem of dimension disaster, and
the feasible solution cannot be obtained in polynomial time. Therefore,
for the variable scheduling, a single mathematical programming model
often cannot cover all the factors and faces problems such as large
solution space and dif�icult calculations.

Nevertheless, the mathematical programming still plays an
important role in solving the pipeline scheduling problem. For example,



in natural gas pipeline scheduling, mathematical programming model
can be solved directly by nonlinear optimization methods such as
interior point method and Newton gradient method. In order to
improve the accuracy and ef�iciency of solving the model under
different constraints, scholars put forward many optimization methods
to improve the accuracy and ef�iciency of solving the model. Geiler et al.
[13] described how to solve the problem of using mixed integer (MIP)
programming method to solve the feasibility optimization of natural
gas pipeline network. The MILP model is obtained by relaxing the
established MINLP model formula, which is solved by the branch and
bound method of improved branch strategy. At the same time, Schmidt
[14] reconstructed the problem, and an improved interior point
method framework [15] is used to solve the nonlinear feasibility
problem of the non-smooth complementary constraint. Cobos-zaleta et
al.[16] and others used the external approximation method with
equality relaxation and augmented penalty provided by solvers to solve
the compressor power approximation function based on the
established compressor power approximation function.

2.2.2	 Heuristic	Algorithm
The heuristic algorithm is based on intuitions or empirical constructs
that give a feasible solution to the combinatorial optimization problem
within an acceptable range. The method provides a quick solution or
reduces the search space to reduce the complexity of the formulas used
in representing real-world systems. Heuristic algorithm is a common
method for solving complex optimization problems, without �inding the
optimal solution in polynomial time, but balances the calculation time
and scheduling effect, and obtains suboptimal or satisfactory solutions
with less computation. Heuristic algorithm mainly depends on domain
knowledge to reduce the solving space of the problem to guide the
solution, with the advantage of obtaining satisfactory solutions within
acceptable computing time for large-scale problems. The heuristic rules
of the heuristic algorithm can be a relatively mature abstract algorithm,
such as the greedy algorithm, priority algorithm, or a set of logic rules
formulated according to the speci�ic scheduling problem and process
constraints of the model.



The heuristic rules of the heuristic algorithm can be relatively
mature abstract algorithms, such as greedy algorithm, priority
algorithm, etc. For example, precedence algorithm is used to solve the
scheduling problem of re�ined oil pipelines with the priority of oil
demand. In this problem, each station’s distribution and transportation
demands may not be met at the same time, and each station has a
priority order for various oil products. Therefore, the scheduling plan
can be formulated by considering all stations uniformly based on the
quantitative priority method. This problem can also be solved by
greedy algorithm. Partial stations are preferentially processed based on
the greedy algorithm, �irst to meet the distribution and transportation
needs of the priority station, and then to meet the second priority
station, etc. until the �inal batch is delivered. The heuristic rules of the
heuristic algorithm can also be a set of solving logic rules according to
speci�ic scheduling problems and process constraints of the model. For
example, Rejowski and Pinto [17] summarize a set of convergence rules
for distributing operations based on the historical operation plan of
actual pipelines and propose a heuristic method for optimizing
distributing plans.

For the optimization of the natural gas pipeline network scheduling,
the operating energy consumption of the compressor can be optimized
by taking the nearest operating condition point of the compressor to
the best operating condition point as the objective function. However,
the energy consumption of the compressor is affected by the operating
conditions of the whole pipe network and the pressure of the inlet and
outlet, it is not mean that the closer it is to the best operating condition
point, the smaller the energy consumption will be, and there may be
different degrees of deviation under different operating conditions. In
general, the result obtained by taking the minimum deviation as the
objective function is not too bad, and it is usually a satisfactory solution.
This is the heuristic rule for running the optimization, which can
reduce the nonlinearity of the original model with the lowest energy
consumption and obtain a satisfactory solution to a certain extent. The
research results show that the heuristic method has a good effect on
solving basic math problems such as hydraulic nonlinear scheduling
problems and large-scale model solving ef�iciency. However, the use of



this method will inevitably lead to problems such as poor optimality of
the solution results and weak universality of the method.

2.2.3	 Metaheuristic	Algorithm
Metaheuristic algorithms include particle swarm optimization (PSO),
ant colony optimization (ACO), genetic algorithm (GA), simulated
annealing algorithm (SA), and so on.

This kind of algorithm is generally used to solve the oil product
scheduling problem in stages. For example, when solving large-scale
scheduling problems, the above algorithm can be used to obtain some
key variables in the model, such as batch arrival time node ranking,
injection station injection oil injection sequence, etc. Then the
traditional mathematical programming method can be applied to solve
the second stage model based on some key variables obtained. The
results of the second stage can be used as the �itness function value of
the metaheuristic algorithm to iterate until the model converges.
Although these algorithms can solve nonlinear problems such as batch
sorting, they also have the following shortcomings: (1) The solution
results may converge to the local optimal solution; (2) The algorithm
takes a long time to solve. If the objective function of the original
problem is taken as the �itness function of the metaheuristic algorithm,
the algorithm often needs to iterate hundreds or even thousands of
times before convergence, and each iteration needs to complete
computation of high complexity.

For the optimization of the natural gas pipeline network scheduling,
the components in the natural gas pipeline network can be divided into
active components and passive components. Among them, the passive
component is the pipe section. The passive refers to that a pipe network
composed of any pipe section, no matter what its topology or pipe
network parameters are, as long as the pressure and �low of one section
of the pipe network are determined, the hydraulic state at any position
of the whole pipe network will be determined. The other part is active
components, such as compressors, valves, etc. For active components,
the system can choose to adjust the compressor speed, pressure of inlet
and outlet, and other control methods to change the operating state of
the system. Therefore, the initialization particle of the PSO algorithm is
to determine the control parameters of two active components of the



pipe network. After the initial hydraulic state is determined, the
hydraulic simulation of the pipeline and the calculation of various costs
are carried out, then the �itness of the particles is calculated, and �inally,
it is judged whether the particles have reached the maximum number
of iterations. If it is reached, the result will be output, and the position
and velocity of the particle need to be updated if it is not reached.

2.2.4	 Dynamic	Programming	Algorithm
The optimization problem satisfying this property can be solved by
dynamic programming algorithm. The scheduling optimization of the
gas pipeline network can divide the process into several interrelated
stages. In each stage, decisions should be made and then a complete
plan with good effect can be obtained for all stages. To improve the
effect of the complete plan, decisions for each stage should be
determined based on current state and impacts on the future. The way
of processing a problem as a chain-like structure and solving the
problem by multi stages is called multi-stage decision-making process.
The problem is then called multi-stage decision-making problem. In the
multi-stage decision-making problem, decisions taken in each stage are
generally related with time because it should be determined based on
current state and impacts on the future. The �inal plan is generated
under the changing state, so it’s dynamic. This process of optimizing
multi-stage decision-making problems is called the dynamic
programming method.

The decision variable of the natural gas pipeline network
scheduling optimization problem is usually the control value of
compressor pressure or pressure ratio. In the hydraulic system of the
whole pipeline, the pressure between different compressor stations
meets no aftereffect; the hydraulic change condition after a compressor
station is only related to the compressor station, not to the previous
compressor station. Therefore, it can be solved by dynamic
programming algorithm.

2.2.5	 Data-Driven	Algorithm
Some scholars [18] have introduced self-learning and other machine
learning methods into the scheduling �ield, enriching the solving means



of scheduling problems and making the research directions of
scheduling problems more diversi�ied.

The solution method based on machine learning tries to make full
use of the historical operation data of oil product pipeline and changes
the formulation model of oil product pipeline scheduling plan from
traditional mathematical planning and theoretical solution to data-
driven solution. The method based on self-learning can solve the
scheduling problem of the product oil pipeline with known time nodes.
Meanwhile, it can reduce the solving time of the model on the basis of
learning the history operation plan of pipeline ef�iciently. In the
metaheuristic algorithm, when the initial solution and the optimal
solution differ greatly, the calculation time of the model may be too long
and the global optimal solution cannot be obtained. However, in the
actual operation of pipelines, it is not very different from the historical
scheduling plan for a new plan to be made when the supply plan,
demand plan, and initial pipeline state of a pipeline are not very
different. Therefore, the pipeline historical operation plan database can
be established, and the closest historical plan can be found from the
database by comparing the above parameters when making a new
pipeline scheduling plan, and it can be used as the initial solution of the
metaheuristic algorithm. For example, in order to get the initial solution
of sequencing batch arrival time node, according to the known
parameters of the new plan, a similar scheduling plan can be found
from the history plan database by using the method of fuzzy clustering,
sorting by the time node of the plan as the initial solution of the new
plan, so as to accelerate the convergence speed of the algorithm and
improve calculation results [6].

For the data-driven natural gas pipeline scheduling optimization,
considering the monthly, daily, and hourly gas consumption non-
uniformity of off load nodes, the natural gas regulation department
needs to quickly respond to the �low �luctuation and realize the
accurate control of pipeline pressure, compressor start and stop, and
�low distribution in the station. Based on this, it is necessary to apply
the hydraulic simulation model to simulate the historical dispatch plan
of the natural gas pipeline network under different supply and demand
conditions, and to mine the association rules between the �low of each
node and the energy consumption of the compressor. Based on the



forecast of node supply and demand trends and the relationship
between energy and energy consumption, a steady-state scheduling
optimization model for natural gas pipeline network is established to
realize rapid scheduling optimization of uni�ied �low direction
regulation and uni�ied pressure regulation of large-area natural gas
pipeline network.

2.3	 Conclusion
With the development of intelligent pipelines, pipeline scheduling
gradually develops from human–computer interaction to intelligence.
Although the scheduling software has continuously improved the
degree of automation, to formulate an ef�icient and �lexible oil product
pipeline scheduling plan, it must be based on the original research, with
the help of modern technologies such as the Internet of Things, big
data, arti�icial intelligence, etc., to achieve intelligent scheduling. This
chapter summarizes existing research from the perspective of modeling
methods and solution algorithms. At present, the research on modeling
methods is relatively mature, and intelligent scheduling is biased
toward the development of ef�icient and accurate solution algorithms.
The prospects for intelligent pipeline scheduling are as follows:
(1)

There are currently some data-driven algorithms. However, in
order to improve the solution ef�iciency and solution quality, it is
still necessary to develop new algorithms based on big data
mining combined with existing algorithms. In this way, real-time
decisions about pipeline scheduling can be supported.

 

(2)
In order to realize the transition from real-time scheduling to
active scheduling, it is necessary to closely combine the changes
in consignment demand and the changes of pipeline operation
status to achieve quantitative prediction. Ef�icient and accurate
solution algorithms can be developed based on the prediction
results and the data obtained by the full perception of pipelines.
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Abstract
With the development of the technology and information science,
nowadays it has the potential to make oil and gas supply systems more
ef�icient and safety in terms of system operation. This chapter describes
a novel model for intelligent demand side management (DSM) system,
which incorporates customer demand analysis and forecasting,
customer reaction analysis, dynamic pipeline network prediction, rapid
supply reliability assessment, multi-objective optimization, and
dynamic pricing. The DSM approach uses a dynamic pricing strategy to
smooth load patterns, increase �irm pro�it, and improve system
dependability.
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3.1	 Development	of	Demand	Side
Management
Natural gas is a clean energy which has been used for social
development and economic prosperity. Natural gas has developed
rapidly in recent decades. Natural gas will contribute for 25% of global
energy consumption by the mid-twentieth century, depending on the
report from energy organization [1]. The ef�icient energy is more
competitive than alternative renewable, such as nuclear energy and
wind energy, due to its supply dependability. As a result, optimizing and
trying to balancing the natural gas supply and demand is critical.

Various ef�icient management strategies have been established in
various nations to successfully manage the functioning of natural gas
market. For example, the natural gas market in the USA established the
competitive structure, in which the market determines the natural gas
price. Besides, the supply capacity of pipelines is open to different
social providers and consumers [2]. As the European market leader, UK
trading gas as a short-term commodity but not on long-term
agreements [3]. However, the current gas market management cannot
maintain supply dependability and minimize operational costs. The
present management’s limitations can be listed as follows: First,
providers produce natural gas consistently for some time, but since
end-user natural gas needs are always changing, natural gas shortages
during peaks may lead to intolerable penalty prices. Furthermore,
natural gas can be stored underground or in speci�ically built facilities
to help balance the gas demand and gas supply. However, these storage
installations sometimes require strict geological conditions and are
constrained by the engineering design and gas source conditions. The
preceding studies have emphasized the importance and bene�its of
operators, while customers’ satisfactions and economic costs have
received little consideration. It is critical to develop a �lexible and
intelligent decision-making skeleton to improve the system operation
ef�iciency and reduce the shortage of natural gas.

The �lexibility of energy price is vital to unlock market potential and
increase ef�iciency, according to electric power grids [4]. Demand
response (DR) improves ef�iciency and system reliability by including



CUs [5]. Price-based and incentive-based [6]—System operators may
switch off various appliances in incentive-based DR schemes to
minimize CUs’ energy consumption [7]. Different smart grid
management frameworks have proved its ability to handle DR concerns
by incorporating distributed or centralized methods to portray users’
energy usage patterns, intending to increase system operation
dependability and optimize system pro�its [8]. DR management
involves utility corporations, transmission operators, and end-
consumers. Consumers include electric plants, industrial and
commercial customers. It is a great challenge of optimization system
operation and developing pricing strategy under limited source and
environmental restrictions.

RL has been used to decrease micro-grid expenses and enhance
energy ef�iciency [9]. In Ref. [10], a forecasting model identi�ies
environmental indeterminacies, and RL is used to investigate the ideal
smart grid pricing scheme. This strategy may boost revenues and
minimize energy usage. In Ref. [11], model-free reinforcement learning
is adopted to improve energy management ef�iciency leveraging
operating data. RL-based solution addresses DR management for
privacy-preserving clients considering the characteristics of customers.
The suggested architecture minimizes the effect of random consumer
perturbations [12]. Our study explores optimum management solutions
for long-distance natural gas pipelines under physical limitations.

However, one cannot instantly apply power grid DR protocols to
natural gas pipeline networks due to inherent incompatibility. Natural
gas that is compressible causes pressure �luctuations at nodes that are
slow to propagate across pipelines. Modeling process is different from
electric power networks due to the complex transient characteristics of
natural gas [13]. Furthermore, since natural gas pipeline networks have
tougher boundary requirements, changes in demand might result in
safety problems because of pressure constraints at key nodes [14]. In
order to bridge research gaps, this section suggests a novel systematic
DR approach. This proposed method can provide insight into
maximizing pro�itability, ensuring operational reliability, and reduce CU
dissatisfaction, for a natural gas market with a variety of consumers
and supplies.



3.2	 Methodology
Forecasting of gas demand, pricing strategies developing and
performance evaluation are three parts of the proposed methodology. A
neural network model based on deep learning is utilized to anticipate
the gas demands of consumers in the forecasting part. Then, taking into
account the natural gas �low and communication between gas
resources and end customers, a framework for managing the network
of natural gas pipelines leveraging the advanced deep reinforcement
learning is developed to address the issue of the relationship modeling
between intelligent and physical models. To learn more about the
suggested approach, we analyze several algorithms and assess the
system’s performance across a range of price ranges. In the �inal parts,
a sensitivity analysis is carried out to take into account the in�luence of
the incentive on the enhancement of system performance.

3.2.1	 Mathematical	Models	for	Gas	Networks
Gate stations, CUs, and operations centers are the primary components
of natural gas pipeline networks (OC). Figure 3.1 shows how the
pipeline system’s natural gas �low and information �low. The gate
station serves as the intersection of the city pipeline networks and
upstream gas sources. Natural gas prices are set by the OC in response
to requests from various CUs, which are crucial for information
exchange [15]. The natural gas is transported by pipelines from the gas
sources to the end consumers, and compressors are constructed to
increase the kinetic energy of natural gas.



Fig.	3.1  City natural gas network model

3.2.2	 Pipeline	Network	Model
The temperature and pressure drop along the pipeline in the delivering
the natural gas downstream. Pressure, temperature, pipeline diameter,
and gas propriety, the corresponding characteristic can be determined
by Eq. (3.1):

(3.1)

where Qj is the �low rate of natural gas in Nm3/s, Dij is the inner
diameter of the pipe segment i-j in m, pi and pj indicate the pressures at
nodes, in Pa, Z is the compressible factor of natural gas. T is the gas
temperature, in K,  denotes the energy loss caused by the friction
between pipeline and natural gas, Lij is the length of pipeline m–n in m,

 is the speci�ic gravity.
We use Eq. (3.2) to calculate the speci�ic gravity:

(3.2)

where  and  represent the molecular mass of gas and natural gas,
respectively. The calculation of the speci�ic gravity can be obtained by
Eq. (3.3):

(3.3)

The frictional factor is calculated by the following Eq. (3.4):

(3.4)

(1) Balance constraints
The mass input rate and out�low rate ought to be equal at every

node in accordance with the mass conservation rule. The following is
an expression for this restriction:

(3.5)



where  and  denote the absolute mass in�low rate and
out�low rate of the ith node.

(2) Node constraints
Firstly, the node pressure has to be handled within the certain

range. More speci�ically, the maximum permitted pressure difference of
the pipeline must be higher than the distribution pressure at nodes,
and the compressor input pressure should be greater than the
necessary suction pressure. The pressure restriction may be expressed
as:

(3.6)

where  is the operation pressure, in Pa;  denotes the minimum
delivery pressure, in Pa;  is the maximum allowable pressure of
the ith node, in Pa.

To counter the wasted energy caused by friction, gas compressors
are deployed in the pipeline system. The high speed of the impeller
provides kinetic energy for the passing natural gas. The value of the
head may be calculated using the formula below:

(3.7)

where R is the universal gas constant,  is the inlet temperature of gas
compressor.  are the pressures at inlet and outlet, respectively, 
denotes the isentropic exponent. It can be derived from Eq. (3.8):

(3.8)

3.2.3	 Analysis	of	Customer	Demands
We assume that consumers prefer to consume natural gas when prices
are low. And they prefer to minimize consumption when prices are
higher than they anticipate psychologically. This serves as the basis for
the management of demand response. We introduce Eq. (3.9) to explain
the characteristics:

(3.9)



where  denotes the gas retail price for CU n at time slot t, 
represents the sensitivity coef�icient of CU n,  is the elasticity
coef�icient, which describe the reaction to demand at different time
periods,  represents the psychological expected price of user n.
Besides, if the retail price is equal to the psychological expected price,
the supplied gas is equal to the demanded gas. It indicates that the CU
will choose to adjust their demand as anticipated and that its demand is
unaffected by the retail price.

3.2.3.1	 Measure	for	Demand	Fluctuation
The probability of a natural gas shortage and system performance will
rise with abrupt changes in �low rates and demand. The optimization
technique takes into account the gas consumption variation rate, which
is strongly connected to system dependability. In Eq. (3.10), the
�luctuation of natural gas for customer n is computed as follows:

(3.10)

where  represents the average gas consumption of CU n for T period.

3.2.3.2	 De�inition	of	Customer	Dissatisfaction
As the actual demand of the customer is not met, i.e., there is an
imbalance between the actual demand for gas and the actual supply of
gas. This supply imbalance is re�lected in customer dissatisfaction. The
dissatisfaction is calculated by Eqs. (3.11)–(3.13):

(3.11)

(3.12)

(3.13)



where kn represents the elasticity factor. For this speci�ic situation, the
elasticity coef�icient represents the responsiveness and elasticity of the
quantity demanded of service to a change in its price. Generally, the
value of the elasticity factor is negative. The critical parameters αn and
βn are associated with kn.

3.2.4	 Operating	Center	Pro�it	Model
The gas sources deliver the natural gas to different end-consumers at
each time slot. According to OC, the pro�its are based on the volume of
natural gas sold downstream. We assume that the gas price at gate
stations is constant, which makes it more clearly illustrate how retail
pricing in�luences CU’s demands. Equation (3.14) may be used to
compute OC’s pro�it.

(3.14)

3.2.5	 Objective	Functions
In this section, we characterize the reward function of the optimization
problem by using objective function to improve system performance,
which taking into account a variety of factors, including OC pro�it, CU
discontent, and demand variability [16] using Eq. (3.15):

(3.15)

where Cp denotes the utility of OC’s pro�it through getting one unit, Cc
denotes the dissatisfaction spending of one unit, Cb denotes the
spending of �luctuation of the demand. Cp, Cc, and Cb are set properly
which indicate monetary unit (m.u.) per-unit of natural gas.

3.2.6	 Intelligent	Algorithm	for	Gas	Pipeline	System
Management
An intelligent algorithm that shows promise is reinforcement learning.
The sequential decision-making issues are successfully applied in
numerous �ields which is largely attributed to its �lexibility on
complicated nonlinear situations [17]. Reinforcement learning does not



need extensive previous information, unlike conventional heuristic
algorithms like the particle swarm optimization, ANN, and greedy
algorithm, and it may learn and adapt constantly in the dynamic
environment. It is signi�icant for unpredictable and adaptable natural
gas markets to make sensible decisions. Agent, environment state s,
action a, and reward r represent four basic elements in typical
reinforcement learning. Generally speaking, the deep learning methods
are as follows: To begin with, the state matrix is passed to the agent at
time slot t; what’s more, the agent due to its policy  select an
action  and carry out the action which based on the
environment; the environment follows the transfer probability

 , and then state  becomes to a new state  ; in the back
of receiving a scalar reward, which de�ines how good the action has
been selected, the agent through maximizing the expected total reward
to update its strategy, which will be token over from now on.

3.2.6.1	 Solving	the	Pricing	Problem
In order to deal with the dynamic pricing problem in natural gas
pipeline networks, different CUs must be determined by the agent OC at
different times. It can be expressed as an extensive Markov decision
process (MDP) [18]. The key elements include: discrete time t, action
at(  ), state st(  ,  ), reward R(r(  )), and
combined state probability T(p(  )). In order to deal with
MDP, �inding a way that delivers big returns is important; v* refers the
optimal function with state value:

(3.16)

where the policy  denotes a mapping state transitions, the worth of
state s under a policy  referred  , is the returns when beginning
with in s and following  . After that,  denotes the average value
under the stochastic transitions, and   denotes a discount
factor.

In the same way, the state-action value function can be determined
 due to Eq. (3.17) as below:



(3.17)

3.2.6.2	 Dynamic	Pricing	Method	Based	on	Deep	Q-Learning
(DQL)
Decision-making issues have been resolved in a variety of contexts
using Q-learning (QL). The classic QL uses a table with rows and
columns to describe the action and state spaces as a value-based
approach. The values of the matching values are kept in the cells of this
table in each row. Since the spaces may be quite large and the cost and
complexity will be unacceptably high, using QL to solve a genuine, issue
on the large scale can be challenging. The framework of combining DQL
with DSM for pipeline system is depicted in Fig. 3.2.

Fig.	3.2  Framework of DQL for the pipeline system

Through replacing value function from the standard QL algorithm to
a deep Q-learning (DQL) with parameters  , which can be described as

 . To decrease the uncertainty produced by data
relationship, a parameter vector  is used here. The parameter 



denotes the self-updating function. The objective function of gradient
descent is as follows in Eq. (3.18):

(3.18)

3.2.7	 Forecasting	Model	of	Customer	Demand
Current approaches to energy demand forecasting include time series
models, neural network models, regression models, and hybrid models.
Among them, time series models have the advantages of not requiring a
priori knowledge and being simple and easy to operate and have been
applied to energy demand forecasting for various event horizons.
Similar to event series models, regression models are also widely used
for energy demand forecasting due to their simplicity and promising
forecasting results.

The CNN-LSTM method can extract complex features from multiple
variables collected by the local sensors. It has gained popularity in
spatio-temporal energy consumption forecasting problems. Here, we
build a series connection to integrate their feature extraction with the
forecasting model. A typical CNN network contains a convolutional
layer, a pooling layer, a ReLU layer, and fully connected layer. Firstly, the
convolutional layer applied convolutional operation to the input
variables to extract the basic feature. Then the output of the
convolutional layer will be sent to the ReLU layer, which creates a
nonlinear function to learn the complex time series. The pooling layer
focuses on feature integration that reduces the dimension of features
and uses fewer parameters; it can reduce the complexity of
computation without distortions. To improve the accuracy and
generalization of the forecasting model, the aforementioned layers can
be stacked to make the model deeper. Finally, the output layer extracts
features to LSTM. Here, we de�ine  as the input
vector of the �irst convolutional layer; the number of n is the
normalized data per window with length T.

The other advanced technique adopted in the convolutional
network is using a pooling layer to reduce the number of parameters
and computation cost in the network. It provides an approach to
downsampling feature maps by summarizing the presence of features



in patches of the feature map. The most common pooling operation is
max-pooling; it selects the maximum value of each patch of feature
map. The stride is another parameter that modi�ies the amount of
movement over the vector. If the stride of pooling does not perfectly �it
the kernel size and input size, we will use padding to make up for
overlaps. After extracting the important features from energy
consumption, the output of CNN will be sent to the LTSM layer to
further mine the hidden temporal patterns.

LSTM has the same control �low as RNN that processes the
sequence of vectors one by one; it can handle the relevant information
in the sequential process by propagation. But, if the time series is very
long, it’s hard for RNN to predict accuracy for its poor ability in
transferring information from earlier time steps to later time steps.
Besides, the gradient vanishing is another problem as the information
back propagates through time. To overcome these bottlenecks, LSTM
uses several gates to control the cell state’s updating process. The gates
decide which information is allowed to pass on the cells. There are
three typical gates: input gate, forget gate, and output gate. In the input
gate, we pass the previous hidden state and current input to activation
function sigmoid and tanh. The input gate can select the relevant
information from the current step and integrate regulated outputs of
activation functions. The forget gate decides the information that
should be dropped according to the output of the sigmoid function.
Also, the output gate combines the calculated hidden state with the
current state and passes it to the sigmoid function, which determines
the next hidden state.

To extract features from the multivariate time series collected from
different locations, we integrate the spatial and temporal modeling
capability of the CNN and LSTM model. To be more speci�ic, we use the
CNN model as the �ilter to explore the spatial relationship between
adjacent locations; after that, we use LSTM layers to extract the
temporal dependencies of features extracted from the CNN model. The
structure of the CNN-LSTM model can be seen in Fig. 3.3.



Fig.	3.3  Structure of the CNN-LSTM model

As shown in Fig. 3.3, the CNN-LSTM model contains a convolutional
layer, pooling layer, �latten layer, LSTM layer, and dense layer. The input
time series passes the stacking layers in sequence and outputs the
predicted energy consumption in the last layers. At �irst, the units of the
convolutional layer locally connect to the input layer; the kernels share
the same weight matrix. The sparse connectivity and parameter sharing
decrease the model parameter and simplify the training process than
compromising accuracy. Besides, the pooling layer is used to
downsample the output features, considering its advantages in
dimensional reduction and over�itting prevention. We use the max-
pooling technique to summarize the important local features. The
�latten layer integrates feature maps and converts these features into a
one-dimensional vector. Finally, the memory block of LSTM receives the
extracted features and outputs the forecasting results in the dense
layer.

It should be noted that to evaluate the performances of the
forecasting model in different horizons, the number of neurons of the
dense layer should be matched with various horizon times. The energy
consumption forecasting may evolve into sequence-to-sequence
forecasting problems.



To compare the forecasting performances of different models
comprehensively, we use three criteria here, including mean absolute
error (MAE), mean absolute percentage error (MAPE), and root mean
squared error (RMSE), as in Eqs. (3.19)–(3.21):

(3.19)

(3.20)

(3.21)

where  represents the actual energy consumption at time slot i, and
 denotes the forecasted energy consumption at time slot i.

3.3	 Case	Study
Figure 3.4 depicts a natural gas pipeline network that consists of two
supplies, 16 pipelines, two compressor stations, three demand sites,
and pressure ratios of between 1.02 and 1.18.

Fig.	3.4  Structure of natural gas pipeline



Forecasting the natural gas consumption is essential for ef�icient
management for pipeline system. The predictions model’s input in this
work is the gas demand at time t. The neural network serves as the
foundation for the natural gas forecasting. Following a “50–30–20%”
division to split the historical data. N The number of the hidden layer
ranges from 2 to 4, and the hidden unit sizes can range from [100 200
300 400]. The bi-LSTM layer that comes after an LSTM layer, with
hidden unit counts of 300 and 200, respectively, turns out to be the best
hidden layer architecture. The forecasting results are analyzed in
detailed by comparing the forecasting performance of different models.

Figure 3.5 shows the outcomes of �ixed price and dynamic pricing.
We can observe that, in the case of dynamic pricing, the retail prices are
correlated with the varying patterns in the demand for natural gas. This
may be explained by the fact that when CU’s gas requirement is greater
than usual, the agent (OC) prefers to improve the retail price to reduce
the gas consumption. On the other hand, when in the consumption
valley, the OC prefers to decrease the retail price, to attract consumers
to improve their gas consumption. The peak shifting is clearly impacted
by the dynamic pricing scheme.



Fig.	3.5  Pricing results comparison for customers

As shown in Fig. 3.6 by the rise in OC’s pro�it and CU’s satisfaction, it
can be shown that dynamic pricing outperforms �ixed pricing.
According to the �indings, the suggested algorithm may increase OC
pro�it and lower demand �luctuation without compromising CU
satisfaction (Table 3.1).



Fig.	3.6  Comparison of customers’ performance

Table	3.1  Consumption of natural gas under �ixed and dynamic pricing schemes

	 Maximum	(Nm3/h) Minimum	(Nm3/h) Average	(Nm3/h)

CU1 CU2 CU3 CU1 CU2 CU3 CU1 CU2 CU3

Fixed pricing 25.71 25.62 24.89 17.73 17.43 19.56 22.30 22.39 22.54

Dynamic pricing 24.44 24.40 23.94 18.40 18.30 20.06 22.03 22.20 22.40

3.4	 Conclusion
In this chapter, we provide a brand-new, methodical approach for
making decisions on the operation of natural gas pipeline networks. To
thoroughly optimize system performances, taking into account OC
pro�it, CU unhappiness, and operation dependability, the suggested
management framework coupled with RL is established. To anticipate
the demand for natural gas, a customized forecasting model is created.
The bene�its of the pricing framework suggested rest on both creating
tactics in line with CU patterns and the dynamically effective
improvement brought about by intelligent algorithm. The �indings



demonstrate that the dynamic pricing method does indeed perform
better than �ixed pricing in raising CU satisfaction and encouraging
peak shaving while saving money. For the average action-state value,
we have compared several methods to prove the ef�iciency of the
proposed method. The comparison’s �indings demonstrate that the
suggested framework exceeds existing algorithms and asymptotically
optimizes the pricing strategy.

The rapid development and gradual application of intelligent
algorithms have provided new and powerful support for improving the
reliability of system operation and resource allocation ef�iciency.
However, there are still two problems in combining the above
algorithms with the natural gas system: (1) the application target and
application scope of price-based incentives. The main consumers of
natural gas are urban residential and industrial users, and the two
types of users have different consumption patterns and different
response patterns to prices. The modeling must incorporate
information from the actual production system and analyze the
relationship between incentives and customer behavior. (2) Ef�iciency
of algorithm implementation in large pipeline networks. The large-
scale, complex structure and changing supply and demand
relationships of natural gas pipeline systems require short time to solve
the problem effectively. On the other hand, the complexity of the
algorithm grows with the size of the problem, and the ef�iciency of the
solution decreases signi�icantly, so the value of the algorithm in large
network systems needs to be further explored and veri�ied.
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Abstract
As climate issues gradually attract public attention worldwide, the operation and
construction of pipeline networks have been attached with new energy-saving and
emission-reduction targets. This chapter systematically sorts out and summarizes the
carbon emission sources and environmental impacts of pipelines during the whole life cycle.
The models for the life cycle assessment are also clari�ied from the perspective of
construction, operation, fugacity, leakage, recycle, and disposal. Through the result analysis
from the existing work, this chapter identi�ies the driving factors of emissions, including
pipe length, diameter, and throughput. Finally, relevant recommendations are put forward
based on the results to help reduce emissions from pipe transportation.

4.1	 Environmental	Impacts	of	Pipelines
Researches on energy conversion to reduce carbon emissions are attractive to more and
more countries due to the signi�icant impact of carbon emissions on climate change.
Unfortunately, fossil fuels still dominate the fuel market as their wide applications and
irreplaceable roles in heavy transportation. As approximately 24% of carbon dioxide
emissions come from transportation sector, the consumption of fossil fuels is the core factor
affecting global warming. There is 3.92 × 106 kt oil which has been consumed in 2018, and
the oil consumption is predicted to keep growing. At the same time, the global demand for
natural gas has increased dramatically in the past two decades, indicating a rapid increase
in carbon emissions from natural gas. Both evaluating fuel ef�iciency and choosing future
alternative fuels need the awareness of carbon emissions of various fuels.

To comprehensively evaluate carbon emissions and energy consumption, not only the
end-use should be considered, but also its production, transportation, or disposal needs to
be taken into account. As pipelines remain the most economical and widespread mode for
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inland and near-shore oil and gas transportation, pipeline networks worldwide have been
expanding rapidly. To quantify the environmental effects of transporting oil products and
natural gas, detailed emission assessment techniques for oil products and natural gas
pipeline networks are necessary. Especially, pipeline transportation undertakes most
transmission tasks for delivering oil products and natural gas, which is doubtlessly a key
area of environmental effects analysis.

4.2	 Carbon	Emission	Stages	of	Pipeline	Transport	System
Life cycle assessment (LCA) is extensively applied to quantitatively calculate carbon
emissions from different activities, covering stages of “cradle to grave” of assessment
objectives. For this section that concentrates on transportation system of re�ined oil and
natural gas, emission stages in the life cycle of oil products and natural gas pipelines can be
divided into four parts, including construction, operation, fugitiveness, and recycling.

Construction of pipe segments and other infrastructures is necessary before operating it
of�icially. Usually, long-distance pipelines no matter transporting oil or natural gas consist of
intermediate stations and the pipe body. Intermediate stations are arranged along the
pipeline, which include pump stations, valve chambers, and other auxiliary facilities. Pump
stations relying on the work of pumps are applied to provide power for the pipeline
transmission, which is the most energy-consuming part of pipe operation. Correspondingly,
enormous energy consumption in pump stations also means great carbon emissions caused
by fossil fuel combustion. Compared with oil products pipelines, carbon emissions of
pipelines transporting natural gas more depend on pump stations. Here, the production and
processing of steel, the forging of materials, and its transportation to the corresponding
location consist of activities related to pipeline construction. Soil excavation, pipeline laying,
soil back�illing, and road compaction are indispensable because pipelines are always buried
underground in order to avoid terrain restrictions and reduce �loor space. Besides,
anticorrosive layer needs to cover pipelines underground for protecting pipelines. Fig. 4.1a
concludes activities in the pipeline construction stage.



Fig.	4.1  Different emission phases in the life cycle of oil products pipeline system

The transmission process has a signi�icant impact on oil products pipeline due to which
multi-products are transported in pipeline simultaneously, and this process is called batch
transportation in petroleum industry. Oil mixture, namely contamination or transmix, will
be produced in batch transportation, as shown in Fig. 4.1b. In the practical engineering of
pipeline operation, objectives containing maximizing the demand of consumers and
minimizing operational costs should be considered as well. For oil products pipelines,
operators need to make scheduling plans according to the capacity of upstream re�ineries
and demand of downstream market to determine the injection plan effectively. As for
natural gas pipelines, operation plan is essential for reducing energy consumption and
carbon emissions.

Figure 4.1c shows fugitive emissions existing in pipeline systems, but some the
emissions are designed in purpose. For instance, the venting of oil tanks has ability of
avoiding overpressure. In addition, leakage caused by pipe corrosion, natural disasters, and
other human factors will lead to both economic loss and environmental pollution. Leakage
still happens in sometimes although protection measures like anticorrosion coating have
been implemented. After years of operating, a pipeline will be declared obsolete eventually,
and this is the time for recycling it, or metals and other recyclable materials would be
discarded and cause irreversible pollution to the soil. Thus, recycling stage is worth of
considering as indicated in Fig. 4.1d

4.3	 Life	Cycle	Analysis	of	Oil	Pipelines
4.3.1	 Infrastructure	Construction

(a)	Pipe	manufacturing



Carbon emissions in pipe manufacturing mainly come from fossil fuels combustion,
electricity consumption, and non-energy-related emissions [1]. As the manufacturing
process is not the core content of computing emissions of oil products pipeline system,
calculation methodology of this part can be simpli�ied, and the result can be obtained by
Eq. (4.1). Emission from pipe manufacturing is represented by  , and the emission factor
of steel production [2] is  .  denotes the length of pipe segment  ,  is the
diameter, and  is the wall thickness.

(4.1)

(b)	Anticorrosion	coatings
To protect pipelines for oil corrosion and stray current corrosion, anticorrosion coatings
and cathodic protection are adopted. Long-distance pipelines usually use coal char paint,
polyethylene (PE) double-layer structure, PE three-layer structure or fusion bonded epoxy
(FBE) as anticorrosion coatings [3]. Here, we select 3PE coatings for carbon emissions
calculation, and the emission from anticorrosion coatings  is computed by Eq. (4.2):

(4.2)

where  is the emission factor of coating materials obtained through Ecoinvent 3
database,  indicates the corresponding thickness of coating of the i-th pipe section.

(c)	Pipe	transportation	and	laying
For buried laying, trench excavation is often used, and excavators are required to complete
the construction. Considering the large differences in pipeline geological conditions, the
resulting emissions cannot be considered uniformly. Therefore, we assume the excavation
process is adopted and corresponding factors can be estimated [4]. The width  of groove
bottom is obtained from Eq. (4.3), The volume  of the soil excavated by the pipeline is
obtained from Eq. (4.4). According to the speci�ied parameters of the excavator, we can
obtain the power consumption  in the process of soil excavation and back�ill construction
as shown in Eq. (4.5).

(4.3)

(4.4)

(4.5)

 is the average working cycle of an excavation including full bucket lifting, empty
bucket rotation, etc.,  is its average power, and  is the standard bucket capacity.

Road transportation is common in transporting pipes and other auxiliary facilities, so
the raw material processing plant is assumed to locate in the middle of the pipeline, then
the average haul distance equals to a quarter of the total pipe length. Based on these, the
emission  of pipe laying can be calculated by Eq. (4.6), wherein  and  are the
emission factor of power grid and road transportation [5].

(4.6)



(d)	Construction	of	pump	stations
In previous studies, the life cycle of liquid pumps from production to product delivery has
been intensively studied [6, 7]. Therefore, we assume that the discharge of the production
pump set is �ixed. Considering the different emissions produced by pumps with different
powers, we made a uni�ied assumption for the power of the main and branch line pumps.
Thus, the total emissions from the construction of the pumping station can be estimated
using the Eq. (4.7). Among them,  represents the emission from the construction of the
pumping station,  is the emission of a pump unit in the trunk line,  is the total
number of pumps along the trunk line,  is the output of a pump unit in the branch
line, and  is the total emission of branch pumps.

(4.7)

4.3.2	 Pipe	Operation
As we discussed above that the operation of oil product pipelines needs scheduling plan as
the guideline. The scheduling plan can be attained by mixed integer linear programing
models [8, 9], and it also helps to compute the energy consumption of pipelines.
Equation (4.8) is constructed to calculate Reynolds number  , wherein  is the density
of product transported in pipe  ,  represents the �low rate, and  is the viscosity of
product  . Then, �low pattern of oil in pipelines can be determined according to its
Reynolds number.

(4.8)

After calculating the Reynolds number, the friction resistance coef�icient related to
different �low patterns can be calculated, as shown in Eq. (4.10). Then, the head loss  can
be given by Eq. (4.9). In general, local friction  is equal to 1–2% of friction loss, so we use
Eq. (4.11) to calculate the output power of pump  .  is the �low rate of pipelines, and 
denotes the ef�iciency of pump units. Finally, carbon emissions  producing by energy
consumption in pump stations are computed by Eq. (4.12).

(4.9)

(4.10)

(4.11)

(4.12)

The amount of contamination is necessary for assessing the potential emission from
contamination treatment procedures, and we choose the Austin and Palfrey model to
compute it. Here, we assume that delivery temperature is 10 ℃ and contamination consists
of 50% of both forward and trailing products [10–12], and the speci�ic formulas are shown
as follows:

(4.13)



(4.14)

(4.15)

The kinematic viscosity of product A, product B, and contamination is represented by
 ,  , and  . The length of contamination is represented by  and  refers the

critical Reynolds number.
Usually, there are two ways for processing contamination: blending treatment and sent

contamination to re�ineries. As the blend process mainly completes in tanks, energy
consumption of contamination pumps contributes most carbon emissions in this process.
For contamination sent to re�ineries, carbon emissions from energy consumption of feed
pumps and heating devices are considered. Based on this, the total emissions  of
contamination treatment can be expressed by Eq. (4.16).

(4.16)

The power consumed by pumps is represented by  , which the compute method
has been introduced above.  is the emission factor of heating devices, and the fuel
consumption of heating device is  .

4.3.3	 Fugitive	Emissions
Fugitive emissions including emissions of evaporation and accidental releases are inevitable
produced during the processes of venting, �laring, �illing, and unloading activities, and it can
be obtained by existing results in leakage database and IPCC2006 guidelines [13, 14]. The
life span of pipelines is assumed to be twenty years, and emission factors related to fugitive
emissions of pipelines operation are veri�ied based on the guideline. The fugitive emission

 is expressed by Eq. (4.17).

(4.17)

Here, the fugitive emission factor of CO2 and methane in oil pipe transportation is indicated
by  and  ,  is the designed annual volume of transportation, and  is the
global warming potential of methane on the basis of CO2 [15].

4.3.4	 Recycle	and	Disposal
The recycle and disposal of pipe materials are required for protecting environment and
reducing costs. There are many feasible proposals for recycling pipe materials, but haven’t
been widely applied in practical engineering [16, 17]. Thus, we proposed several
assumptions based on the characteristics of the oil products pipeline, including pipe
cleansing, removal, and material recycling.
1.

Residue cleansing 
Before cutting and removing pipeline, residual oil in the pipeline should be processed at
�irst. Both cleansing process and cleanliness requirements of waste pipeline are different
with pigging of in-service pipes. In general, a combination of auxiliary and sealing pigging is
used to clean waste pipeline, wherein auxiliary pigging aims at removing solid deposits and



sealing pigging is set up to treat liquid. Here, water is assumed to be the media of pipe
cleansing, and the power consumption leads to the main carbon emission of this process.
Thus, the calculation of carbon emissions can adopt Eqs. (4.8)–(4.12).
2.

Pipe removal technologies 
Removing pipe consists of equipment preparations, soil excavation, and back�ill, which has
signi�icant meaning for waste disposal. The technologies used in this process is similar to
technologies using in the construction process although the order of treatment is opposite
to construction process. Based on this characteristic, emission calculation formulas of
infrastructure construction are also suitable for pipe removal.
3.

Materials recycling 
As pipelines are made of great volumes of metals, the recycle of metals can bring economic
and environmental bene�its. We can simplify this process and assume that there are 40% of
metal can be recycle, which means recyclable coef�icient  equals to 40%.

Then, Eq. (4.18) is established to compute emission  produced by recycle and
disposal process, wherein  in this formula is negative due to the recyclability of
materials. The total emission produced by oil pipeline can be assessed through the
computational results of  to  .

(4.18)

4.3.5	 Impact	on	Soil	Environment
During the construction stage, the pipe trench will inevitably produce spoil. Soil that is
originally in the space occupied by the pipe will be discarded. The volume of pipeline has a
signi�icant impact on the amount of excavated soil, and the amount of abandoned soil  is
computed by Eq. (4.19).

(4.19)

Back�illing soil is inevitable to form a weak surface, which is another reason of causing
soil erosion. It increases the chance to lead geological disasters containing landslide and
collapse. In the practical engineering, 10–20 m is the normal size of working band of oil
products pipeline, and Eq. (4.20) is proposed to compute soil erosion  . There will be soil
erosion modulus when constructing pipelines, and  and  represent the soil erosion
modulus after and before the construction.  is the planned construction period, and 
indicates the speci�ic construction area [18, 19].

(4.20)

Soil with outstanding carbon sequestration function is widely considered an ideal
carbon container. Thus, soil abandonment and loss in process of pipeline excavation have
potentially increased the amount of carbon storage in the soil. According to related studies
[20], 20.5 Mg/ha is a suitable value of for the average soil organic carbon storage potential

 , then the amount of reduced carbon in this process can be calculated by Eq. (4.21).



(4.21)

4.4	 Life	Cycle	Analysis	of	Gas	Pipelines
Differences in the life cycle of oil products and natural gas pipelines are mainly embodied in
the operation stage. Thus, this section concentrates on the detailed calculation model of the
operation stage. At this stage, three aspects of carbon emissions are considered: in the
process of putting the pressure station into production, the damage in the process of
equipment use and maintenance, and the leakage of pipeline damage due to accidents. Next,
three parts are introduced in detail

4.4.1	 Compressor	Station
Compressor stations of the natural gas pipeline system provide most of the necessary
energy for gas transmission, and it also produces a large number of carbon emissions. The
energy consumption of compressors has a different calculation method than that of oil
pumps. The hydraulic friction coef�icient  which impacts the energy consumption
signi�icantly of pipelines should be computed �irstly, and the calculation formula can be
expressed as follows:

(4.22)

Based on the hydraulic friction coef�icient, the �low rate can be attained by Eq. (4.23),
wherein  is the volumetric �low rate and  is the coef�icient of pressure loss.  and 
are the pressure of the start point and end point of pipelines. The compressibility of the gas
in isothermal situation is represented by  , and  indicates the relative density of natural
gas.  is the gas temperature.

(4.23)

Computing the energy consumption requires speci�ic pressure ratio and �low rate. Here,
the pressure distribution of pipelines are known. For the compressors, its energy
consumption is also determined by motor speed  , and the mathematical formulas are
expressed as follows:

(4.24)

(4.25)

(4.26)

 represents the power, and  is mass �low rate, while  ,  ,  refer the power,
mass �low rate, and motor speed in work condition.

Based on Eqs. (4.24)–(4.26), we can attain Eq. (4.27); therefore, the power can be
calculated by �low rate if the pressure ratio of compressor stations is known.

(4.27)



Then, carbon emissions of compressor stations can be computed based on power
consumption and conversion coef�icient of carbon emission, as shown in Eq. (4.28). 
refers the amount of carbon emissions caused by compressor stations, and  is the working
time of compressors.

(4.28)

4.4.2	 Maintenance
The maintenance of equipment is the other main source of carbon emissions in operation
stage that we cannot ignore, but it is hard to quantify it. Here, we adopt economic ratio
method to calculate the carbon emission caused by maintenance. In the area of practical
engineering economics, approximately 10% of the annual depreciation cost is equal to the
maintenance cost. Based on this, the speci�ic ratio between maintenance cost and total
investment can be estimated. As economic cost is positive related to carbon emissions, we
can assume that this ratio is also suitable for the carbon emissions. After completing the
carbon emission calculation of all stages except maintenance process, the carbon emission
of maintenance process can be calculated based the ratio. Speci�ic compute formula is
expressed as Eq. (4.29).

(4.29)

 and  are the economic cost and carbon emission of maintenance process, 
refers the total investment of pipeline, and  is the carbon emission in total.

4.4.3	 Leakage
Due to the great differences of physical properties between natural gas and oil, the carbon
emission calculation method of leakage process for natural gas pipelines is also different
when comparing to oil product pipelines. Two aspects including leakage probability and
leakage amount are considered in the model of computing the carbon emission. In addition,
we assume that the leakage gas all consists CH4. According to statistics, the probability of
leakage can be estimated. As shown in Table 4.1, the failure probability of natural gas
pipelines is 0.157/1000 km per year.

Table	4.1  Pipeline failure probability

Data	sources EGIG CONCAWE US	DoT CEPA

Research period 2004–2013 2001–2006 2002–2007 2004–2013

Type of transportation media Gas pipeline Oil pipeline Oil pipeline Gas pipeline Gas/Oil pipeline

Pipeline failure probability (/1000 km·a) 0.157 0.280 0.340 0.089 0.140

The leakage of natural gas pipelines is affected by many factors, containing leakage
speed and leakage duration. In general, the calculation model of leakage can be divided into
three types: large hole leakage model, small hole leakage model, and pipeline fracture
model. Statics shows that third party damage leads to 76% of pipeline leakage in China and
54% of natural gas pipeline leakage worldwide belongs to small hole leakage. Therefore,
small hole leakage model is applied to compute the leakage volume of natural gas. The
speci�ic calculation method is expressed as follows:



When  /   < CPR, the gas leakage rate m is:

(4.30)

When  /   > CPR, the gas leakage rate m is:

(4.31)

CPR is the critical pressure ratio,  refers the leakage area,  is standard atmospheric
pressure,  indicates the correction coef�icient ranging in 0.61–1.0, the coef�icient of
polytropic is represented by  ,  is the molar mass of gas, and  refers the gas constant.

Based on above formulas, we computed the leakage amount of natural gas pipe with
different leakage hole diameter, and computational results are shown in Table 4.2.

Table	4.2  Leakage rate of pipeline with a different leakage hole diameter

Leakage	hole	diameter	(m) Leakage	hole	area	(m2) Leakage	(kg/s)

0.01 7.85 × 105 4.59

0.025 4.91 × 104 28.71

0.05 1.96 × 103 114.82

0.1 7.85 × 103 459.28

4.5	 Life	Cycle	Analysis	of	Pipeline	Samples
4.5.1	 Oil	Pipelines
Six pipelines are used as the objections of calculating the carbon emission, and Fig. 4.2
displays the routes of pipelines. Table 4.3 gives the basic parameters of these pipelines,
including pipe length, diameter, and elevation. The physical properties of oil such as density
and viscosity are shown in Table 4.4.



Fig.	4.2  Geographical diagram of oil products pipelines

Table	4.3  Input parameters of studied pipelines

Oil	products
pipeline

Pipe
length
(km)

Pipe
diameter
(mm)

Pipe
elevation
(m)

Transmix	download
station

Product	types Designed	capacity
(104	t/a)

Lanzhou-
Chongqing

1247 508, 457.2,
323.9

−1329 Terminal station 0#, 92# 546

Lanzhou-
Changsha

2087 610, 660, 508 −1471 Intermediate and
terminal station

0#, 92# 570

Western 1858 559, 508 447 Terminal station 0#, 92# 440

Dagang-
Zaozhuang

610 355.6, 273.1,
219.1

66 Terminal station 0#, 92# 285

Golmud-Lhasa 1119 323.9 588 Terminal station −35#, −20#, 0#,
92#,95#

25

Fushun-
Zhengzhou

1585 457, 508, 559,
610, 669

139 Intermediate station
and
Terminal station

−10#, 0#, 92#,
95#

800

Table	4.4  Viscosity of different products at different delivery temperatures

	 Gasoline Diesel

Product number −35# −20# −10# 0# 92# 95#



	 Gasoline Diesel

Density 0.823 0.834 0.841 0.847 0.724 0.725

Viscosity(20 ℃) 6.016 0.613

Base on the basic information of pipelines, the carbon emissions of pipelines can be
computed by the LCA model, and Table 4.5 shows the computational results.

Table	4.5  Emissions associated with each activity considered as part of the life cycle

	 Lanzhou-
Chongqing

Lanzhou-
Changsha

Western Dagang-
Zaozhuang

Golmud-
Lhasa

Fushun-
Zhengzhou

Total CO2e (t) 4.39 × 105 8.25 × 105 7.68 × 105 2.15 × 105 2.33 × 105 7.05 × 105

Uni�ied CO2e
(tCO2e/t km)

3.23 × 10–6 3.47 × 10–6 4.70 × 10–
6

6.19 × 10–6 4.17 × 10–5 2.78 × 10–5

As Table 4.5 expressed, we use the CO2e for delivering 104t products for 1 km to assess
the emissions of each pipeline, which has more fairness. The results show that pipelines
with larger distance will produce more carbon emissions. To comprehensively evaluate the
impact of different links on carbon emission of different life stages, Table 4.6 displays the
speci�ic carbon emission of life stages. We can see that the construction of pipelines and
pump stations is the main source of carbon emission. Meanwhile, the carbon emission of
transmix treatment only takes a small part of total carbon emission. The infrastructure and
intensity of regional power grid have a great impact on the difference between energy
consumption and emission.

Table	4.6  Life cycle GHG emissions associated with different phases (t)

Oil
Products
Pipeline

Pipe
manufacturing

Pipe
construction

Pump
station
construction

Transmix
processing

Pump
operation

Fugitive
emission

Recyclable
content

Recovery
operations

Lanzhou-
Chongqing

6.51 × 105 136.89 1.25 × 103 26.11 1.62 × 105 1.48 × 104 3.91  ×  105 853.60

Lanzhou-
Changsha

1.49 × 106 303.37 3.16 × 103 81.21 2.09 × 105 1.54 × 104 8.92  ×  105 1297.57

Western 1.15 × 106 227.10 2.30 × 103 54.58 2.90 × 105 1.19 × 104 6.93  ×  105 3543.62

Dagang-
Zaozhuang

1.52 × 105 85.79 6.01 × 103 20.88 1.43 × 105 7.72 × 103 9.14  ×  104 3072.68

Golmud-
Lhasa

4.55 × 105 140.38 0.90 × 103 7.04 4.60 × 104 677.46 2.73  ×  105 3369.44

Fushun-
Zhengzhou

1.14 × 106 218.35 3.06 × 103 68.05 2.21 × 105 2.17 × 104 6.84  ×  104 2620.98

4.5.2	 Gas	Pipelines
Figure 4.3 shows the topology structure of the natural gas pipeline system, and the speci�ic
parameters including the length, diameter, and wall thickness of the pipe are given in Table
4.7.



Fig.	4.3  Geographical diagram of natural gas pipelines in the case study

Table	4.7  Parameters of each case pipeline

Station Download	volume108m3/a Pressure	MPa Type	of	station Length/km Quantity	of	steel	used/t

A1 0 6.8 Pressurize 0 192,660

A2 0.22 /  104.61

A3 0.89 7.9 Pressurize 140.25

A4 0.09 /  153.12

A5 1 /  154.64

A6 0.1 6.0 Pressurize 47.82

F1 11.68 /  42.78 10,355

F2 3.5 /  102.86

C1 1.57 /  200.84 6081.93

The carbon emissions of natural gas pipelines can be calculated based on the above data,
and the results are shown in Table 4.8.

Table	4.8  Carbon dioxide emissions in each stage of each case

Stage Carbon
emission/t

Total	carbon	emissions	in	each	stage
/t

Manufacture
stage

Pipeline production 6.9838 × 105 7.3163 × 105

Equipment production 770.00

Transportation process 3.2472 × 104

Construction
stage

Excavation and back�illing of the pipe
trench

481.42 2296.19

Pipeline construction 14.77

Station construction 1800.00

Operation stage Operation of pressure station 4.0179 × 104 1.1334 × 105



Stage Carbon
emission/t

Total	carbon	emissions	in	each	stage
/t

Leakage (methane) /

Maintain 7.3162 × 104

Recycle stage Pipeline removal 496.19 2.6474 × 104

Transportation process 2.5978 × 104

The results show that 80% of carbon emission is produced by the manufacture stage,
and the operation stage also has large amount of carbon emission, accounting for 1.1334 × 
105t. However, the carbon emission of the other stages such as the construction stage and
recycle stage is much smaller than manufacture stage and operation stage. These
demonstrated that the main source of carbon emission is generated in pipeline construction
of the �irst stage.

4.6	 Conclusion
As climate issues gradually attract public attention worldwide, the operation and
construction of pipeline networks have been attached with new energy-saving and
emission-reduction targets. This chapter systematically sorts out and summarizes the
carbon emission sources and environmental impacts of pipelines during the whole life cycle,
and LCA models for oil products pipelines and natural gas pipelines are proposed in this
chapter. For both oil products and natural gas pipeline systems, the results show that
emissions generated by producing pipelines take the largest part of total carbon emissions,
followed by the operation of the pumping station. It demonstrated that technologies which
can reduce the carbon emission of steel manufacturing industry are the most potential
solutions for reducing carbon emissions of pipeline system. Besides, optimal scheduling and
operation of oil products and natural gas pipelines are also helpful for the reduction of
carbon emissions.
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Abstract
Monitoring pipeline operating conditions is a vital component in
pipeline safety and risk management. Although the SCADA system
stores a large amount of operational data, the data lacks associated
condition labels, making it dif�icult to mine. Furthermore, the operating
circumstances of the multi-product pipeline vary often, and
identi�ication and monitoring by on-site employees are prone to error,
so the pipeline’s operating conditions cannot be reliably identi�ied. To
address the aforementioned challenges, this chapter presents semi-
supervised learning for operating condition identi�ication. The �indings
show that semi-supervised learning has more stability and improved
performance regardless of how the neural network is built. The
suggested technique may be utilized as a decision-making tool for
monitoring and identifying multi-product pipeline operating
conditions.

5.1	 Introduction

https://doi.org/10.1007/978-981-19-9899-7_5
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Oil and gas transmission is only one of the many jobs taken on by the
pipeline industry. For reasons of both national economic and military
importance, the reliable functioning of pipeline transit is crucial.
Consequently, identifying the operating state of long-distance oil (gas)
pipelines is an effective method of averting potentially catastrophic
mishaps during oil (gas) transfer. However, due to the many
transportation options and the nature of everyday activities, operating
status is always shifting. Some operating states that may pose safety
risks may only be determined by pressure curves, with the help of
human inspections at the station, which presents a dif�iculty in the
event of an incomplete data label. It’s a slow and time-sensitive method
of evaluation. It is also challenging to create an accurate causal network
connecting neighboring stations in a vast and complicated long-
distance pipeline network. Meanwhile, it’s dif�icult to depend just on
expert expertise when trying to establish the prior probability between
various causal connections.

When scientists �irst began their investigations, they focused mostly
on �inding ways to detect breaches in pipelines. Osegi [1] suggested a
pipeline data monitoring system based on a very sparse predictive
deviation learning algorithm to address the shortcomings of
conventional physical–mathematical models, namely their lack of
timeliness and predictive ability (p-DLA). Our approach is distinct
because it makes use of actual data from pipeline operations to do its
modeling and validation, rather than hypothetical data. Signal
processing algorithms are used by Kim et al. [2]. to pinpoint the exact
site of pipeline leaks. However, the sensor data was impacted by noise,
and the sensor network could not cover the whole pipeline network,
leading to a signi�icant false alert rate. The dynamic pressure waveform
was analyzed by Liu et al. [3]. using wavelet analysis and empirical
mode decomposition. To locate the pipeline leak signal, the support
vector machine technique was used for. While the aforementioned
techniques all identify an unusual operating situation, none of them can
generalize to other cases. While some of our work does fall under the
umbrella of anomaly detection, we put special emphasis on identifying
change points that are better characterized by operational states; we
also work on improving methods for segmenting data from operation



records; and �inally, we work to identify operational patterns across
time.

Fundamental supervised learning criteria cannot be satis�ied in oil
and gas pipeline systems due to a lack of trustworthy fault data and
event annotation over several time periods. Consequently, there has not
been signi�icant amount of research into categorizing and identifying
gas and oil pipeline operating states. The BN based on the complete
pipeline system must be built if it is to be used in studies of recognizing
the operational state of pipelines. The building process is challenging
because it requires specialized knowledge and skill. In addition,
incorporating expert opinion seldom yields accurate prior probability
of occurrences. In conclusion, it is challenging to apply the BN to infer
and recognize the operating modes of pipelines network systems based
on the existing state of accessible pipeline network data and event
information.

In this chapter, we present a data-driven state identi�ication model
that uses data mining techniques to identify the operational condition
of petroleum and natural gas pipeline systems from two different
vantage points: the equipment level and the subtransmission station
level. It’s possible that additional huge and complicated systems might
bene�it from using the graph structure feature-based approach.

To identify out-of-the-ordinary pressure changes in pipeline
systems during operation, the change point detection technique [4] is
used. In addition, the approach may derive the partitioning of time
series data using transition points as boundaries, which aids in reacting
to the consequences of missing certain actual occurrences because of
faulty sensors or incorrect settings. Finally, the operating modes of the
pipeline are recognized using statistical feature-based, structure
feature-based, and interval-based time series classi�ication approaches.
We compare and explain the categorization algorithms based on four
distinct operational situations to demonstrate the viability of the
methodological framework.

5.2	 Methodology
This machine learning-based approach to state recognition has two
goals. First, it seeks to identify transitions in pipeline operation through



unsupervised learning techniques. Second, oil pipeline operational
conditions can be determined by data-driven analysis. Figure 5.1
illustrates the connection between the two problems. Each of the
aforementioned processes is broken out into further depth below.

Fig.	5.1  Flowchart of methodology

5.2.1	 Method	for	Detecting	Changes	in	Operational	States
This section introduces the cumulative sum approach, which may be
used to identify transitions between modes in a subtime series. It is
possible to segment the time series at the observed transition points.
We also provide metrics for assessing the quality of the tests. We also
compared the change point detection approach with a control group
comprised of isolation forests to further understand its bene�its in this
speci�ic case study.

5.2.1.1	 Change	Point	Detection	Method
A state change identi�ication model can be established to clarify the
various operational changes experienced by the pipeline and even
detect possible abnormal state changes during pipeline operation.
Combined with the event records from the SCADA system, the events



that lead to changes in the pipeline’s operating state can be quickly
determined over different time periods.

When the pipeline operating state changes, the probability
distribution of the pressure time series changes abruptly in two
consecutive intervals, and since the two intervals are moving, a state
change point is considered to exist when the probability distributions
of the two intervals are signi�icantly different. The method to achieve
the above determination process is shown in Eq. 5.1, and this method is
known as the cumulative sum (CUSUM) test method [5].

(5.1)

where  and  denote the cumulative sum of positive and negative
changes, respectively. h and v denote user-de�ined thresholds and
correction parameters, respectively, whose purpose is to weigh the
number of true and false alarms. Equation 5.1 indicates that if  and

 exceed the user-de�ined threshold (ℎ), an alarm is raised and the
cumulative sum is then reset and the next detection is made [6].

5.2.1.2	 Evaluation	Indicators
This chapter uses four metrics to evaluate the model test results:
accuracy (acc), precision (prec), recall (rec), and F1 value [7].

(5.2)

(5.3)

(5.4)



(5.5)

where TP (true positive) indicates the number of actual positive
samples predicted to be positive; TN (true negative) indicates the
number of actual negative samples predicted to be negative; FP (false
negative) indicates the number of actual positive samples predicted to
be negative; and FN (false positive) indicates the number of actual
negative samples predicted to be positive.

5.2.2	 Characteristic	Representation
A feature vector of low dimension is used in feature-based classi�ication
and recognition algorithms to uncover the hidden information in a
subsequence. In this part, we'll go over two different ways of
representing features: time–frequency domain statistical features and
complex network structure features. In order to characterize the
complexity, volatility, and smoothness of the input subtime series,
statistical features perform mathematical operations on the data. The
statistical features used include the mean, kurtosis, skewness, standard
deviation value, variance, complexity, approximate entropy, and
absolute energy. The complex network structure features are obtained
by converting the subtime series into the form of a complex network
graph; the speci�ic conversion and feature extraction process are shown
in Fig. 5.2.



Fig.	5.2  Process of characterizing the structure of complex networks

A pair of nodes is considered to have an edge if and only if it is
possible to draw a straight line between them, regardless of whether or
not any additional data is between them, according to the conversion
rule [8]. The process of visibility graph conversion is shown in the left
corner of Fig. 5.2. Eq. 5.6 also provides a de�inition for the laws of
transformation.

(5.6)

where  ,  , and  represent different times in time series;  ,  ,
and  mean the different values corresponding to the different times.

The advantage of using complex network structure features for
characterization is that this allows the reduced dimensional features to
not only feature the shape of the time series, but also contain the
physical information behind the data to be conveyed. In this study, six
graph network features, shortest path length, clustering ef�iciency,
global ef�iciency, algebraic connectivity, homomorphism, and
modularity, are used for characterization.

5.2.3	 Operational	State	Recognition	Method



In this investigation, we extract features for differential pressure by
integrating the operational characteristics of the pipeline with special
attention to rapid changes and volatility. Using features of the statistical
and graph structures, we may identify the operational states. The
objective is to utilize classi�ication techniques to determine what state a
subsequence belongs to by embedding it into a set of characteristics. As
a benchmark, we also tried both the interval-based and dictionary-
based categorization strategies to help us choose the most effective
recognition approach.

We begin by selecting a feature-based method for categorizing the
outcomes of the two feature representations. Three powerful classi�iers
were chosen (random forest, adaptive boosting, and support vector
machine), and we will be comparing them experimentally to �ind the
one that provides the best reliable recognition results.

Method	1	(Random	Forest	(RF)). This approach utilizes the
concept of ensemble learning to train and predict samples using a
classi�ier that combines many decision trees. Large datasets are
suitable for this strategy. It can process high-dimensional
characteristics in the input sample without resorting to dimensionality
reduction. On top of that, its accuracy and resilience surpass those of
standalone classi�iers, making it not only generally accessible but also
useful in a variety of contexts. The Gini index is often used in RF to
determine the optimal split and can be written as [9]:

(5.7)

Method	2	(Adaptive	Boosting	(AdaBoost)). Among the many
boosting algorithms, the AdaBoost algorithm stands out from the
crowd by raising the weight of the samples misclassi�ied by the weak
classi�ier in each round, so drawing more attention to the misclassi�ied
data. The implementation is as follows: given a sample

 , assume that the weight
coef�icient of the  -th weak classi�ier is  ,
where  for  , , then the corresponding
sample weight coef�icient of the (   + 1)th weak classi�ier is de�ined as
[5]:



(5.8)

(5.9)

where  is the normalization factor,  is the weight coef�icient of
the  th weak classi�ier  .

Furthermore, AdaBoost also uses a weighted majority voting
system. Votes are given more weight by weak classi�iers that have low
classi�ication error rates. An exhaustive set of robust classi�iers is given
by Freund and Schapire [5]:

(5.10)

Method	3	(Support	vector	machine	(SVM)). As a high-accuracy
classi�ier, the SVM approach has found several uses in the area of
pattern recognition. The primary principle behind SVM is to categorize
areas by locating isolated hyperplanes that may split the greatest
geometric interval of the training datasets [10]. For a given dataset

 , where  , is
binary class label,   = 1, 2, …,  . If the two classes of the set may be
split by a speci�ic spatial hyperplane, then the ideal hyperplane
maximizes the margins. This is true even if the previous distribution of
the data is unknown. The de�inition of the categorization decision
function is as follows [10]:

(5.11)

where the optimal values for  and  can be found by solving the
following quadratic programming problem [11]:

(5.12)

(5.13)



(5.14)

where  represents the kernel function and  is the penalty
parameter.

5.3	 Case	Study
5.3.1	 Operational	State	Detection
To prove the viability of the change point detection approach based on
the product pipeline transportation system, we set up CUSUM-based
detection studies for various situations. Methods of application and
scenario-speci�ic parameter analyses are outlined below.

Valve status detection is one of an important scenarios in the
system. The differential in pressure between the input and output of
the valve is the focus of this investigation. The whole opening and
closing of the valve is chosen as the criteria for picking the historical
event description since the change of valve state is a continuous
process, and this experiment only focuses on the �irst instant when the
valve state is altered. To compensate for the lag in sensor data during
the state transition process, a maximum acceptable time error of 60 s
was established. Each valve opening and closing action has its own
distinct set of change points since the period between neighboring
change points was set to 3600 s.

Figure 5.3 displays the outcomes of optimizing the detection
technique for its two primary parameters, h and v. The accuracy and
recall are unaffected by the h adjustments. That’s because all possible
values of truth are included in the detection �indings. When comparing
the accuracy at various values, it becomes clear that h = 0.04 and v = 

 result in the fewest false negatives. However, the F1 value is
more than 85.7%. Hence, the parameters combination is the best
parameter con�iguration for case 1.



Fig.	5.3  Parameter optimization results for valve status detection

The results of the evaluation of change point detection are shown in
Table 5.1. As can be seen from Table 5.1, the change point identi�ication
method has a lower miss rate and better overall performance (as can
also be seen from the F1 values). Compared to the isolated forest
method, the miss rate is reduced by 26% in the valve condition
detection application scenario. On the other hand, in the absence of
data labelling, the results obtained by the change point identi�ication
method can be used as a basis for state segmentation of time series
data. It can provide more accurate identi�ication of large and complex
systems that lack data identi�ication or provide a basis for early
warning of different modes of operation.

Table	5.1  Evaluation results of two method in valve status detection and pump shutdown



Scenario Evaluation
metrics

Change	point
detection

Isolation	forest
detection

Scenario Evaluation
metrics

Change	point
detection

Isolation	forest
detection

valve status
detection

Precision 0.9375 0.9

Recall 0.7895 0.5294

Accuracy 0.999 0.999

F1 0.8571 0.6667

pump shutdown Precision 0.912 0.909

Recall 0.554 0.383

Accuracy 0.999 0.999

F1 0.689 0.539

5.3.2	 Recognition	of	Pipeline	Operational	State	on	Single
Station
Classi�ication studies include �ive states, including valve internal
leakage (Scenario S1), valve switch (Scenario S2), pigging (Scenario S3),
and pump shutdown (Scenario S4). The experimental �indings
demonstrate that several categorization models are relevant to various
pipeline operating conditions in the process of addressing actual
engineering challenges. Classi�ication based on graph structural
characteristics has better de�inition accuracy and more generalizability.

In Figs. 5.4a, 5.5a, 5.6a and 5.7a, we have a side-by-side comparison
of the two feature-based categorization models. The model determines
the state of operations based on a 60-s subsequence. From these
�igures, we can conclude that the classi�ication results based on graph
structure characteristics are more accurate in Scenario S1 compared to
Scenario S3. To use just one example, the AdaBoost technique improved
classi�ication accuracy by more than 90%. This is due to the fact that
the shape and trend characteristics of the time series may be inferred
from the graph structure features, which in turn re�lect the time–
frequency domain properties of the subsequence. In contrast, the
statistical features only represent the subsequence’s local time-domain
properties, resulting in a loss of information. In Scenario S4, however,
the pump will shut down if either the input or output pressures exceed
the set alert threshold. There are no de�ining features of the trend in
the time series data. Keep in mind that patterns of similarity might
cause misunderstanding between different types of data. Here, the



statistical feature vector may more accurately represent the features of
the states that are consistent with the logical rule. Consequently, the
statistical feature-based classi�ication model is superior for recognizing
the pump shutdown state.

Fig.	5.4  Classi�ication models of Scenario S1

Fig.	5.5  Classi�ication models of Scenario S2



Fig.	5.6  Classi�ication models of Scenario S3

Fig.	5.7  Classi�ication models of Scenario S4

Figures 5.4b, 5.5b, 5.6b and 5.7b contrast the AdaBoost model’s and
the time series-based classi�ication model’s classi�ication accuracy. The
in�luence of varying subsequence lengths on the �inal classi�ication
results is also shown in these �igures. The �igures show that the SEQL
model is affected by the length of the input subsequence and has the
worst classi�ication accuracy. While the model does make use of SAX
symbolic representation, it suffers from relatively poor classi�ication
accuracy since smaller data �luctuations are obscured by the symbolic
interval, leading to lost information. However, the accuracy with a wide
range of symbol intervals improves and the number of symbols grows



with a longer sequence. The TSF and RISF classi�ication accuracies are
comparable. Our four examples show that their accuracy is more than
80% regardless of the length of the subsequence. In all four cases, the
integrated AdaBoost classi�ication model using graph features achieved
the maximum accuracy while being mostly immune to variations in
input sequence length.

5.4	 Conclusion
The goal of this research is to investigate if it is possible to determine
the operating status of oil and gas pipelines using just data. The report
is based on actual pipeline system data gathered in China over time.
The CUSUM technique is used to identify transitions in the history of
pipeline operations. Therefore, in the context of oil and gas pipeline
systems, demonstrate the abnormal status for our suggested detection
model. The model is able to accurately identify transitions between
equipment operating states, and the results of these detections may aid
in the classi�ication of operating states when annotated data is lacking.
We devised four experimental scenarios for identifying transitions
between states of operation and the results have been compared of
those using a feature set, an interval set, and a time series dictionary.
The classi�ication approach based on graph structure characteristics is
the most generalizable and accurate. Last but not least, the
classi�ication model can recognize diverse operation patterns among
stations independent of the impact and topological qualities between
them.
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Abstract
The present framework for managing long-distance oil and gas
transmission pipelines is encountering dif�iculties as a result of the
elements that are becoming more complicated, unpredictable, and
time-dependent. It requires thorough system characteristics
information, as well as precise beginning and boundary conditions, in
order to be effective. In this chapter, we suggest using the deep learning
approach to the operation and administration of the natural gas
transmission system in an effort to get around these issues. The
suggested approach enables ef�icient and reliable forecasts, particularly
under unusual circumstances. The �indings demonstrate that the
suggested technique can operate the gas pipeline system effectively and
ef�iciently while also making precise real-time forecasts bene�icial for
decreasing future operational losses.
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6.1	 Introduction
From sources through pipeline networks to the various clients, natural
gas travels a great distance. Operations that are accurate and timely
guarantee consistent client supply. This calls for exact timing
knowledge of the system’s and its parts’ circumstances [1]. Therefore,
the use of effective methods to accurately predict the dynamic response
of a system and the future state of its components is a must.

From a broader perspective, we can see how advancements in AI,
ML, and big data are altering how the energy sector is envisioned.
Various studies have been conducted in an effort to address the many
problems that exist in today’s energy systems, such as system
dependability and stability [2], operation ef�iciency and cost control [3],
renewable energy management [4], and environmental concerns [5].
Various energy systems have bene�ited from research into the use of
forecasting, categorization, and optimization approaches. These
improvements have been felt by regulators, consumers, and operators
alike. In addition, recurrent and cascade neural networks are
competitive alternatives for simulating the future of dynamic systems
[6].

Supervised control and data acquisition (SCADA) systems create
and collect massive volumes of data on the operation, device condition,
and gas consumption of natural gas pipeline network systems. There
have been various attempts to estimate and anticipate gas demand in
real time, online, using this huge data. In order to evaluate the live
status of various devices for pipelines, most online state estimators are
built on top of �ilter models [7]. Machine learning has attracted a great
deal of scholarly interest in estimating gas demand, both in terms of
scienti�ic research and practical applications [8]. Foreseeing future
needs in natural gas use has inspired the creation of several algorithms.

Nowadays, deep learning methods have received widespread
attention from companies and academics. The deep structure is used to
extract features hierarchically, allowing the dynamic and inherent
properties of a particular pipeline system to be identi�ied from the data
[9]. It has been demonstrated that the complex dynamics of gas
pipeline networks can be learnt autonomously by neural network
black-box models without a priori information to appropriately predict



the real-time operating state of the system. Although various black box
models based on neural networks have been used for modeling and
analysis of oil and gas pipelines, most of these studies have focused on
single equipment such as compressors or on the analysis of pipeline
safety [10]. Research on the use of deep learning methods to analyze
the dynamics of complex pipe networks is yet to be further
investigated.

An encoder-based deep learning approach is developed in this
chapter to predict real-time changes and equipment status of complex
gas transmission networks. To acquire knowledge of the dynamic
aspects of the system, the stacked autoencoder model is trained layer
by layer using a greedy algorithm, which is then used for prediction at
the end of training. Consideration of temporal and geographical
correlations is included into the model. Deep learning is combined with
theories of network structure controllability and data windows to
maximize data use.

6.2	 Methodology
6.2.1	 Autoencoder
Autoencoders differ from traditional neural networks in that they can
reconstruct their inputs at the output layer. Figure 6.1 displays a sample
autoencoder model that consists of an input layer, an output layer, and a
hidden layer. Taken x = {x1, x2, …, xn} as an example, the process of
encoded and decoded is de�ined as below:

(6.1)

(6.2)

(6.3)

where W1 and W2 represent the weighting matrix and the decoding
matrix respectively; b and	c represent the encoding bias and decoding
bias, respectively.



Fig.	6.1  Construction of the autoencoder sample model

It is possible to determine the model parameters θ by reducing the
reconstruction error (E),

(6.4)

The above method can be used to learn the recognition function if
the size of the input layer is smaller than the size of the hidden layer, so
that sparsity restrictions are added to the objective function. But this
also leads to a shift from autoencoders to alternate autoencoders.
Therefore, the reconstruction error minimization problem can be
calculated as follows:

(6.5)

(6.6)



(6.7)

where H is the total number of hidden layer, ϕ is the sparsity term’s
weight, and  is the sparsity parameter, which is typically very near to
0;  is Kullback–Leibler (KL) divergence;  is the average
activation of the hidden unit j.

6.2.2	 Stacked	Autoencoder
Popular research on machine learning methods has demonstrated the
strong ability of deep structures in learning and their complex and
nonlinear patterns [10]. These studies served as inspiration for the
development of an SAE in this work, which consists of numerous
autoencoders piled on top of one another, with the upper layer’s input
derived from the lower hidden layer’s output. The SAE has a
considerable advantage in extracting the dynamics’ characteristics and
identifying the extremely nonlinear correlations between the acquired
data [11].

A conventional predictor is placed on top of the SAE model to use it
for the prediction of operational condition in gas transmission pipeline
systems. In this chapter, the logistic regression layer is used as a unique
design in the model to predict and monitor the operating conditions of
the system. The entire deep learning model, which made up of the
predictor and the SAE model is shown in Fig. 6.2.



Fig.	6.2  A stacked autoencoder-based model for predicting the real-time operational status of
natural gas transmission pipeline systems

Gradient-based optimization allows the BP approach to be directly
applied to the training of traditional neural networks. Deep neural
networks trained using the BP approach, however, perform poorly. On
the other hand, successful development of the greedy layerwise
unsupervised algorithms has been made [12]. The important elements
are as follows: First, the deep network was pretrained by layer using a
bottom-to-top approach, using the greedy layerwise unsupervised
technique; second, performance is improved by �ine-tuning the model’s



parameters top-down on the basis of BP. The training process is
displayed on Fig. 6.3.

Fig.	6.3  Training framework of the proposed deep learning prediction method

To keep the deep learning model performing well in a changing
environment, we can see that it is essential to modify and retrain the
model using different new data.



The form of the evolution of operating conditions in the short-term
future is not only based on the recent past but also depends on the size
of the pipe network system. In order to make effective use of the
information provided by the useful data, we must update the historical
data for the proposed model. Therefore, the moving window method
[13] is employed in this chapter. The schematic of the moving data
window method is shown in Fig. 6.4.

Fig.	6.4  Schematic diagram of the moving window method

The input and prediction portions of a moving data window’s length
are shown in Fig. 6.4. The inputs in each prediction step are the white
areas in the diagram, and the expected future data are those referred to
by the blue areas. In order to obtain better prediction performance, the
overlapping parts in Prediction II are substituted with the latest
predicted data received at each step shown in Prediction I.

A decent prediction performance can be achieved with less
computational storage expense if the moving data window is designed
properly. Actually, the deep learning model’s “memory capacity” is
determined by how long the white zone is. As a result, moving window
method aids in the proposed model to effectively remember the most
pertinent data for prediction. It is worth noting that this study assumes
that the future state of the subject of study (the gas transmission
pipeline) is in�luenced by past operating conditions of the system itself
and by �luctuations in external gas demand, respectively. Moreover, we
only consider historical needs and not generalities. The input window
criteria are designed as Eq. 6.8:

(6.8)



where S represents the input length; the maximum time for the
disturbance to spread throughout the pipeline system is denoted by T
and Pi refers to the shortest period that has an impact on the evolution
of future gas demand i. By reviewing past studies in demand
forecasting, demand history, natural factors, population, and social
policies, all have an impact on gas demand [14].

6.3	 Data	Cleaning
Unfortunately, relying only on the information gleaned from sensors
might result in a plethora of storage problems and faulty forecasts [15].
In order to narrow the scope of the issue and transform the “big data”
into “wise data,” it is necessary to choose relevant information from the
acquired data.

Pressure is the driving force behind the pipeline system’s dynamic
evolution [16], and the theory of control allows for complete regulation
of the system. As such, we may try to utilize the pressure data
(historical and present) of these components to anticipate the state of
the whole pipeline network, making the pressures of these nodes a
signi�icant source of information for system controllability.

In this chapter, the parts of the gas pipeline network that may be
controlled as a whole are identi�ied using network structural
controllability theory [17]. In the actual world, this technology has been
used to complicated network systems like gas pipeline networks. The
applications’ outcomes demonstrate the capacity to accurately identify
the structural control system’s driving nodes.

The pipeline network for natural gas is mostly governed by
nonlinear processes; nonetheless, nonlinear systems are often
fundamentally comparable to linear systems in terms of their
controllability [18]. Then, the driver nodes may be isolated using the
standard, moment linear dynamics:

(6.9)

where x(t) refers to the state vector of a gas transmission network
topology with N nodes at time t; matrix A, with N × N structural
dimensions, represents the interactions between individual nodes on



the network connection structure; And input matrix B is used to
identify the driving nodes controlled by the time-dependent input
vector u(t).

The Kalman rank condition can be used as a control criterion which
determines the minimum of the drive nodes in classical dynamic
control theory. New ideas of complexity are required [19], however,
since the traditional approach struggles to cope with intricate pipeline
networks. Firstly, the constructed gas transmission pipeline network is
directed, whereas traditional techniques are usually applied to
undirected networks. Secondly, in order to apply the Kalman rank
condition, the weights of all edges of the matrix A are necessary, but in
practice: Even if the weights could be estimated, we would still need to
compute the ranks of 2	N−1 combinations by violent search, which is
not feasible for large and complex gas transmission pipeline networks.

To solve this issue, we use the analytic techniques [20] to determine
the smallest possible group of driver nodes. The so-called structural
controllability of a system (A, B) permits �inding the free parameters in
A and B. Both A and B are structured matrices with zeros and free
parameters as their elements. In general, a structural controllable
network system is controllable for most of weight combinations, except
for certain psychopathic examples with zero measurements. As a result,
the problem of the components of Matrix A having insuf�icient
information may be addressed with the aid of structural controllability
theory.

Here, the corresponding idea from graph theory [17] is used to
determine the smallest possible set of driver nodes, with the help of
principles from structural controllability theory. In the directed graph,
the matching set is the collection of arcs that share no vertices. As can
be seen in Fig. 6.5, the node being matched needs to match the end
vertex of an arc; otherwise, the node is mismatched. A pipeline network
is considered fully controlled when and if all unmatched nodes are
directly controlled, ensuring that the input signal can be transmitted to
all matched nodes [17]. Consequently, we must determine a maximum
match, which may not be unique in a given network. The maximum
match is in�luenced by the minimum set of driving nodes, which also
provides a minimum effective set for prediction. In a given directed



graph, the maximum match can be found in O(N1/2L) steps, where L is
the number of arcs in the graph.

Fig.	6.5  Diagrammatic representation of the controllability of the network structure

The features of the gas transportation process and the underlying
idea of structural controllability dictate that changes in pressure at the
driver nodes will ultimately in�luence the trajectory of the whole gas
pipeline network. Therefore, we can foresee how the system would
develop based on the present and past pressure data of these driving
nodes. This approach may drastically reduce the problem size for a
complicated pipeline network while maintaining high prediction
quality.

6.4	 Case	Study
Both the triangle-based topological pipeline network structure and the
real-world portion of the gas transmission pipeline are affected by the
deep learning model. Although volatility in the natural gas market is
caused by nonlinear dynamics, it is chaotic and not completely random.
The Mackey–Glass model is a hybrid periodic and stochastic time series
model that is often used to assess the validity of forecasting models due
to its chaotic nature. The Mackey–Glass model is calculated as follows
[21]:

(6.10)

where  determines the chaotic behavior of the time series and
represents the time delay parameter, which must be (>16.8). Therefore,
in this study,   = 20. The other parameters were set as follows: a = 



0.2, b = 0.1, c = 10. Here, the time series data is created using the 4th
Runge–Kutta technique, and then samples are taken at predetermined
intervals. Actual data values in this unstable time series rely on those
from the past, which is analogous to changes in gas consumption. In
order to make the application more practical, a random term (of 1% of
the nominal value of the produced gas needs) is included.

TGNET is a commercial software created by Energy Solution for
both steady-state modeling of natural gas pipeline networks and for
modeling the hydrodynamics of natural gas pipeline networks under
transient conditions, and the simulation software is used to obtain real-
time operational data of gas transmission pipelines [22]. This program
has been extensively utilized in a variety of �ields, including pipeline
design, risk analysis, and emergency preparedness.

Although the problems encountered in real engineering are more
complex and variable, this chapter focuses on deep learning models and
their ability to predict the state evolution of natural gas pipeline
networks with nonlinear characteristics.

The input data, together with structural stability and data-window
reconstruction, dictate the size of the deep learning model’s input layer.
The accuracy of the results obtained after trial and error experiments
using the grid search method’s determines the number of nodes in the
hidden layer [11]. The temperature and �low rate of the pipeline
equipment as well as the gas �low rate provided by the supplier are
necessary prerequisites for the prediction model.

The range of input data must be standardized within the range [0,
1] for effective learning. The normalization of each dataset was carried
out independently due to the large differences between the datasets
collected from different locations throughout the gas transmission
pipeline system.

The exact implementation of the proposed method is shown in
detail in Fig. 6.6.



Fig.	6.6  Flowchart of the proposed method

The triangular pipeline network in Fig. 6.7 was used to perform an
arithmetic validation, comparing the deep learning models created with
two established machine learning techniques: BP neural networks and
support vector machines (SVMs). In order to remove the deep learning
model’s inherent advantage in handling large amounts of data, we
choose for the basic network. The shallow BP network just has one
layer, demonstrating the superiority of the DL model over the deep
neural network and the traditional machine learning model. But in
order to ensure that the results can accurately re�lect their capabilities,
the parameters of the BP neural network and the SVM model were
determined through iterative trial-and-error experiments. The provider
is Node 1, and the consumers are nodes 2 and 3. Pressure control
(always equal to 5 MPa) is the control mode for the supply node, while



�low rate control is the control mode for the consumers. Pipelines 1–3,
1–2, and 2–3 with diameters of 0.6 m and lengths of 80 km, 90 km, and
100 km, respectively. The pipeline software TGNET default settings are
used to determine the parameters and methodology for the T−H
simulation.

Fig.	6.7  Topology of the triangular gas transmission network

To assess the prediction performance at different prediction time
lengths, this example is set to predict the change in the operating state
of the pipe network after 3 h, 5 h, and 9 h through the demand load and
the pressure at Node 3, respectively. The length of the input time
window is 10 h. Consequently, 120 is the size of the input for the
triangular network’s prediction issue (the length of each time window
is 10 h, with samples taken every 15 min). A total of 1000 h of T−H
dynamic simulation was selected through the data window, and a total
dataset of 4900 was used for model training, tuning, and testing,
respectively, with 50% of the training set stations, 30% of the tuning
data stations and the remaining 20% being the prediction set. To
ensure the model is generalizable, the model is optimized and validated
using several datasets. The deep learning model’s parameters and



structural parameters will change as prediction time increases. The
sizes of the hidden layers in the “trial and error” optimization are
selected from 2 to 6, and the range of the number of units in the hidden
layers is [300, 250, 200, 150, 50]. The optimal architecture for the
three-hour forecast is a two-layer with hidden units of 200 and 150; for
the �ive-hour prediction, it is a two-layer with hidden units of 250 and
100; and for the ten-hour prediction, it is a three-layer with hidden
units of 250, 150, and 150.

Figure 6.8 shows some of the demand generated at customer nodes
2–3. As can be seen from the �igure, the generated chaotic demand data
shows some degree of cyclical variation, but that variation is not
completely stable, as is the case with real-world gas demand variation.

Fig.	6.8  Demand generated at customer nodes 2–3 (0–200 h)

Three indices are used to evaluate the accuracy of the predictions:
the mean absolute error (MAE), the root-mean-square error (RMSE),
and the mean relative error (MRE). Tables 6.1 and 6.2 analyze the
performances of several techniques. Table 6.1 shows the results of the
pressure prediction of client Node 2, while Table 6.2 shows the
outcomes of supply Node 1’s gas �low rate prediction. The tables show



that, for the various durations of forecast time, compared to BP and
SVM, the DL model has more predictive power. We can see from Tables
6.1 and 6.2 that accuracy declines as forecast time increases. This is
often due to the fact that when the prediction time horizon lengthens,
the strength of the link between the present state and the future state
weakens, making it harder for neural networks to learn such a
relationship. Controlled iterative procedures that employ the
predictions to solve this problem may improve the performance of the
deep learning model.

Table	6.1  Comparison of prediction performance of different models (based on pressure
prediction results for customer Node 2 (×103 Pa))

Task The	DL	model BP SVM

MAE RMSE MAE RMSE MAE RMSE

3-h prediction 2.90 3.45 12.63 17.22 17.11 22.30

5-h prediction 3.92 4.69 16.99 21.72 19.39 22.98

9-h prediction 4.58 5.67 25.78 27.23 27.18 31.10

Table	6.2  Comparison of gas �low prediction results from different models (based on supply
Node 1 (Nm3/s))

Task The	DL	model BP SVM

MAE RMSE MAE RMSE MAE RMSE

3-h prediction 0.88 1.04 3.63 4.91 5.00 6.32

5-h prediction 1.15 1.37 5.06 6.43 5.73 6.75

9-h prediction 1.31 1.43 6.00 6.32 7.94 9.71

Figures 6.9, 6.10 and 6.11 provide visual representations of the
MRE �indings in the form of empirical CDF, which depicts the change in
system operating conditions forecast owing to demand randomness. As
can be seen from the Figures, the DL model outperforms the BP and
SVM, according to these results as well. The DL model can obtain
pressure prediction accuracies of up to 99% and �low prediction
accuracies of over 98% over any time period.



Fig.	6.9  Comparison results of the empirical CDF values of the three models (3-h predictions)

Fig.	6.10  Comparison results of the empirical CDF values of the three models (5-h prediction)



Fig.	6.11  Comparison results of the empirical CDF values of the three models (9-h prediction)

6.5	 Conclusion
This Chapter deals with how deep learning methods can be used for the
prediction of the operational state of gas transmission pipeline
networks, rather than just for the state of a single device of the pipeline.
By integrating the SAE model and the regression layer, this chapter
develops a prediction model based on real operational data. The model
simpli�ies the problem by employing structural controllability theory
on how to select the input data with the highest relevance to the
prediction.

For a fairly complex and wide-ranging gas transmission pipeline
network, this chapter tests and con�irms the ef�icacy of the proposed
framework in terms of input type, prediction duration and noise level.
The superiority of the proposed model is con�irmed by comparing the
accuracy of the proposed model with other machine learning models
applied in the context of natural gas pipelines. Three scenarios have
been taken into consideration to examine the deep learning approach
for atypical situations. The �indings demonstrate that the suggested
deep learning model can faithfully represent the development of
system conditions under various abnormal changes. In addition, the
deep learning models show resilient performance, maintaining high
accuracy even with large amounts of noise. The proposed model allows



for accurate prediction of operating pressures at LNG terminals,
compressor stations, and UGS in real time.

The deep learning model will be further improved in subsequent
work, such as demand response, dynamic programming, uncertainty
management, etc. As part of our ongoing research, we will also take into
account a number of other effective intelligence techniques, including
graphical neural networks, Bayesian networks, migration networks, etc.
We will compare these techniques' performance to the suggested deep
learning technique. There is a need for a more ef�icient data-processing
approach due to the de-normalizing process' comparatively substantial
inaccuracies in pressure prediction.
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Abstract
It is important to monitor the pipeline on a regular basis to reduce the
possibility of leaks, spills, and theft. This inspection also serves to
record real occurrences and their environmental impacts. With the
support of advanced GPS, sensors, and communication technologies,
unmanned aerial vehicles (UAVs) provide the support of intelligent
inspection for pipeline systems. UAV path planning is an important part
of pipeline inspection, which is to design a �light path with the least cost
or time in advance. This chapter introduces the development of
mathematical models and ef�icient solution algorithms for UAV path
planning. The model strictly considers multiple inspection missions,
the intricate terrain threats, and the harsh operational requirements.
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Meanwhile, for the complex structure and the large scale of pipeline,
improved intelligent algorithm is used to improve the ef�iciency of
model solution.

7.1	 Inspection	of	Oil	and	Gas	Pipelines
Oil and gas pipelines are characterized by high pressure and
�lammability, sometimes accompanied by leaks, �ires, and explosions
[1]. Regular pipeline inspections can reduce the danger of accidents,
which frequently result in signi�icant human casualties and substantial
economic expenses. Traditional manual inspection with low ef�iciency
and high consumption has great limitations in mountainous areas,
rivers, canyons, and other geographical environments, as well as in
emergencies such as rainstorms, earthquakes, and landslides.
Unmanned aerial vehicles (UAVs) have drawn a lot of interest in recent
years thanks to their bene�its of low cost, high ef�iciency, and high
safety. By carrying the appropriate detecting instruments for various
targets, UAVs can carry out a range of duties, including leak detection,
pipeline environmental condition monitoring, and pipeline
infrastructure. Power grids, railroad networks, and other networks
were the focus of recent study on civil UAV uses for pipeline inspection
paths [2]. However, the architecture of the oil and gas pipeline
networks is more intricate [3–6] and challenging to determine. Even
when the best option is sought after, it is frequently impossible to do so.

There are now three ways to organize the pipeline network
inspection route. The �irst type of algorithm is one that uses graphs,
such as the Dijkstra algorithm, probabilistic roadmap, and Voronoi
diagram. The inspection area will be divided into multiple spots using
the Voronoi diagram. The inspection region is then divided into
numerous convex surfaces by the Voronoi diagram in accordance with
each inspection point. The ideal inspection path can be found if the
graph contains both the initial point and the destination position. The
probabilistic roadmap is used to discover the path on the roadmap by
the search algorithm after converting the space into a discrete space,
which can signi�icantly increase search ef�iciency. In directed graphs,
the shortest path problem can be resolved using the Dijkstra’s
algorithm. This algorithm’s primary objective is to extend the outer



layer, which is centered at the beginning point, all the way to the �inish
point. The shortest path algorithm between two vertices is the
Dijkstra’s algorithm. The Voronoi diagram [7, 8] and the probabilistic
roadmap [9] have been used in robot path planning. Chen et al. [10]
proposed a multi-objective optimization model to solve the mobile
agent problem in wireless sensor networks and adopted the improved
Dijkstra algorithm in the solution part of the model. However, in
practice, the number of sampling points is different, which will easily
lead to the deviation of the path search results, and the graph-based
algorithm is dif�icult to be applied to the movement of UAVs.

The second strategy uses the A* algorithm and Sparse A* Search
(SAS), two traditional heuristic search methods [11–13]. The state
space, �irst developed by Hart et al. [14], is used by the A* algorithm to
identify the best route from the starting location to the goal position. In
order to narrow the scope of the UAV’s search and enable real-time
path planning, more limits are introduced to the UAV �light process. The
Sparse A * Search is improved on the basis of the A* algorithm, which is
pruned to avoid useless intermediate steps and nodes in the algorithm
search space. However, the A* algorithm and the SAS algorithm must
rely on all known environmental information to plan the path. The
bigger drawback is that as the number of checkpoints increases, the
search space becomes larger and the computational time of classical
heuristic search algorithms increases exponentially.

The third strategy is the current heuristic search method, which is
discussed in Chapter 2 and primarily consists of the genetic algorithm
(GA), particle swarm optimization (PSO), and ant colony optimization
(ACO). A unique method for path planning for an electrical distribution
network patrol was developed by Shen et al. [15]. To determine the
ideal patrol path, the vehicle routing problem (VRP) model and the
modi�ied ACO were applied. However, it is simple to enter a local
optimum during the solution process for complex optimization
problems, which results in premature convergence and missing the
ideal answer.

Additionally, this chapter proposes a mixed integer nonlinear
programming (MINLP) model based on the real requirement for
pipeline network inspection. The goal of the model is to reduce the
overall length of the inspection path while taking into account



restrictions like the mission scenario and UAV safety performance. A
two-stage solution approach is used to �ind the best detection path. In
order to improve the ef�iciency and standard of path planning, an
adaptive genetic simulated annealing approach (AGASA) is suggested in
this chapter to solve the model for the intricate network of oil and gas
pipelines.

7.2	 Mathematical	Model	for	UAV	Path
Planning
7.2.1	 Preliminaries
All potential paths are assessed in the workplace by our path planner.
The model uses the two-dimensional coordinates of the nodes between
pipe segments as deterministic parameters and divides the pipeline
with linear distribution into several pipe segments. It should be
emphasized that the �light route is made up of straight segments, such
as the series of segments joining the beginning node and the path node
of the destination node, where the starting node is also the target node.

7.2.2	 Objective	Function
Assume that  UAVs can be used to inspect the network of oil and gas
pipelines. The following de�inition is applied to reduce the length of the
overall detection path:

(7.1)

(7.2)

where  indicates how far inspection node  is from node  . 
is a binary variable that is either 1 or 0 depending on whether UAV 
executes an inspection task from node  to node  .  and

 are the coordinates of node  and node  .

7.2.3	 Constraints



Every UAV starts at the same location, and each UAV may only complete
the inspection path once before returning to its starting location.

(7.3)

(7.4)

Each node needs to be examined by the UAV in order to guarantee
the quality of the inspection.

(7.5)

The total �light time of each drone is limited by its endurance, where
 is a binary variable; if UAV  has checked node  , it is 1;

otherwise, it is 0.

(7.6)

Set  , and the maximum turning angle
regulates the UAV’s �light angle.  de�ines the endurance of UAV  , 
.

(7.7)

When completing inspection activities, UAVs must strictly follow the
predetermined path and must keep a minimum safe distance 
between one another in order to maintain the safety and order of the
inspection tasks.

(7.8)

7.3	 Two-Stage	Solution	Methodology



7.3.1	 First-Stage	Solution
To optimize the UAV inspection path, we provide a two-stage solution
technique in this section. According to the UAV’s vision, the pipeline is
�irst separated into a few nodes.

When the UAV �lying height is  and the UAV viewing angle is  ,
the inspection radius is  . Figure 7.1 displays a schematic
design of the examination area. The pipe section is divided into a
number of nodes in accordance with the detection radius. The entire
pipe segment of 2R length may be seen when the UAV �lies over the
node. Therefore, the UAV can detect the entire pipeline by detecting
each node, as shown in Fig. 7.2. In this approach, the model’s size is
signi�icantly decreased, the detection task’s effort is lowered, and the
effectiveness of the detection process is increased.

Fig.	7.1  Conceptual rendering of the inspection area

Fig.	7.2  UAV conducting inspection mission in top view



7.3.2	 Second-Stage	Solution
The AGASA is used in the second stage to solve the model and provide
the ideal patrol route for a network of oil and gas pipelines. A type of
self-adaptive heuristic algorithm known as the self-adaptive genetic
simulated annealing algorithm combines the genetic algorithm (GA)
with the simulated annealing technique (SA).

The “survival of the �ittest” idea of biological evolution is followed
by the GA as a traditional intelligent optimization method. Each GA
optimization builds upon the one before it, and as new “genes” are
added through the mutation procedure, the process itself is
signi�icantly altered [16]. The genetic algorithm is good at �inding the
global optimal solution, but it has weak local search capabilities and is
prone to premature convergence. SA is a stochastic optimization
method that Metropolis devised to model the heating, melting, and
annealing of metals. It can eliminate local optimum solutions and make
up for genetic algorithms’ shortcomings. In this section, the AGASA
algorithm is used to �ind the best solution by introducing heuristic rules
in the initial population generation and crossover operation processes.
This section combines the strong local search ability of the SA
algorithm with the global parallel search ability of the genetic
algorithm.

7.3.2.1	 Self-Adaptive	Genetic	Algorithm
(1)

Generation	of	the	initial	population 
A certain number of individuals make up the initial population.

First, a set of �light paths is set for each drone, and the �light routes
start and end at the drone base. The second stage is to determine if any
limits in each UAV’s inspection path need to be met. If all constraints
are satis�ied, the path is the initial path of the UAV. If the test fails, a new
inspection path is constructed until it passes. The basic scheme layout
is �inished once each inspection node is allocated to the UAV. What is
more, the beginning path �itness is low, which helps to optimize the
convergence result and essentially speeds up algorithm convergence.

Each path of the initial scheme can be coded as:
(7.9)



where  is de�ined as the detection path of UAV  ,  ,  is the
pipeline segment  inspected by the �irst UAV, and  ,  is the
pipeline segment  inspected by the second UAV. Similarly,  , 
de�ines the pipeline segment  inspected by UAV  .
(2)

Fitness	performance 
Fitness is a measure of a population’s capacity to arrive at or come

close to an ideal outcome. Higher �itness individuals are more likely to
pass on to the next generation, and lower �itness persons are more
likely to be removed. The model aims to determine the least value of
the goal function by meeting all constraints based on the analysis
mentioned above. Only four limits apply if a single UAV can perform the
reconnaissance mission. All �ive limits should be taken into
consideration if more than one UAV is needed for an inspection mission.

As a �itness function, the objective function is selected:

(7.10)

(3)
Selection	of	genetic	operator 

By replicating individuals, the selection operator creates the
population of the following generation. Selection algorithms can mimic
the process of biological and genetic evolution where the strongest
survive. New individuals are produced by the mutation operator and
the crossover operator. Both crossover and mutation operators may
imitate the process of creating new biological people or species, as well
as the unintentional mistake process brought on by cell division and
replication.
(A)

Selection	operator 



To choose individuals, the algorithm employs the elitist model and
roulette wheel selection.
(1)

Roulette wheel selection 
It is possible to express the proportional relationship between the

likelihood that a candidate will be chosen and their �itness value as
follows:

(7.11)

The algorithm’s precise operation is as follows:
Calculating the  by adding the values of each population

member’s �itness function.
In the interval  ,  is generated at random.
Values for the �itness function rise after the �irst individual. If

 , the chromosome  will be selected.
 is named as the accumulated probability of the chromosome 

, and its calculation method is given in Eq. (7.12).

(7.12)

(2)
Elitist model 

The unpredictability of processes like replication, crossover, and
mutation during the evolution of genetic algorithms may eliminate the
members of the present population who have the highest �itness. We
con�igure the crossover and mutation operations to exclude the people
with the greatest �itness in the current population, and we utilize them
to replace the individuals with the lowest �itness value following the
current generation of genetic operations in order to prevent this
predicament. This elite model can better help the survival of the �ittest.

The elitist model’s exact operational steps are as follows:
Identify the individuals in the current population with the highest

�itness value  and the lowest �itness value  .



If  , consider the individual with the highest �itness
value  to be the best individuals across all populations, i.e.,

 .
Change the individual in the population with the lowest �itness

value  with the best individuals  across all populations, i.e.,
 .

(B)
Crossover 

Chromosomes from two different solutions are spliced together at a
crossover factor, and the spliced parts are then switched around to
achieve crossover. Based on this, a novel technique involves integrating
a small number of exact genes into various chromosomes to produce a
whole new chromosome.

In the process of multi-segment crossover operation of the
individual generated by the parent, the node on the pipe segment is not
changed. This limits the UAV’s ability to whiz past the pipeline and
avoids repeated paths during crossing operations.

The speci�ic steps of the crossover operation are as follows:
(1)

Set the number of intersections to  and select the intersection
range  randomly. Meanwhile, set  .

 
(2)

Check for the intersection’s location in the individuals  and 
, and record it as  and  .

 
(3)

Change the positions of individuals  and  .  
(4)

Change the positions of individuals  and  ,
 .

 
(5) If  , proceed to Step 2; if not, the crossover procedure is

�inished.

(7.13)

 



(7.14)

Following the crossover procedure, two new individuals  can
be obtained:

(7.15)

(7.16)

(C)
Mutation 

A mutation is a chance adjustment to the genetic makeup. The
individual to be mutated can be represented as:

(7.17)

(7.18)

Following are the key steps involved in a mutation operation:
(1) A random mutation probability  is generated in the interval [0,



1].  
(2)

When  , two random elements on the chromosome
 are going to switch places, and when  , three

random elements on the chromosome  are going to switch
places.

 

(3)
The new individuals  and  are generated after a mutation
operation.

(7.19)

(7.20)

 

7.3.2.2	 Simulated	Annealing	Algorithm
(1)

Initial	temperature 
The initial temperature is typically set high enough to guarantee

that the algorithm has strong ergodicity from the start, preventing the
algorithm from entering local optima throughout the solution process.

 is selected as the initial temperature which can be denoted as:

(7.21)

(2)
Temperature	update	function 

The temperature value may be changed by the temperature update
function during an external cycle. The global optimal solution must
typically be reached before the temperature drops to almost zero. The
equal proportional temperature update function was selected as the
temperature update function in this chapter because it is ef�icient and
simple to use:

(7.22)

(3) Acceptance	function



 
The acceptance function is used to determine which of the newly

discovered solutions is better than the previous one. The Metropolis
criterion is typically used to ascertain how well a new solution will be
accepted. It is also utilized to make a distinction between the likelihood

 that the new solution  will succeed the old solution  .  is the
isothermal process’s temperature. The probability is calculated using
the following formula:

(7.23)

7.3.2.3	 Path-Planning	Steps
Figure 7.3 shows the steps of UAV patrol path planning solved by
AGASA algorithm, which are described as follows:



Fig.	7.3  Second-stage solution �lowchart

(1)
Set the settings for the beginning temperature  , the maximum
evolution generations  , and the terminating temperature

 . Initialize a group of pathways with the size of  .

 

(2)
Start the genetic algebra counter  , then assess each path’s
�itness.

 
I di id l f h b l ti h b d th



(3) Individuals from each subpopulation were chosen based on the

crossover probability and mutation probability, and after
selection, crossover, and mutation processes, each new
individual’s �itness value was updated.

 

(4)
Metropolis serves as the standard for determining whether to
replace an old individual with a newer one.

 
(5)

Return to Step 3 if  ,  ; otherwise, go to Step 6.  
(6)

Update the temperature and return to Step 2 if  ;
otherwise, the best or nearly best routes are identi�ied.

 

7.4	 Case	Study
This section takes a real case in North China as an example. The two-
stage solution method proposed in this chapter builds a general
framework for optimization problems and describes the concrete
implementation method.

The base, which consists of a central processing facility (CPF), four
valves, and twenty-nine production wells, was chosen to be constructed
at the CPF. The network’s topology for gathering and transit is depicted
in Fig. 7.4.



Fig.	7.4  Topology of the gathering and transportation network

Since the pipeline segment’s node does not change throughout the
production of the initial solution or crossover operation, the size of the
model is mostly dependent on how many segments are present. For the
sake of computation ease, segmentation is immediately taken into
account for pipelines shorter than 1.5 km in length. Pipes longer than
1.5 km, however, will be split into parts at a 1.5 km interval. In this way,
the model size can be greatly reduced, the convergence speed can be
accelerated, and the optimal solution can be found quickly.

To test the viability of the approach, the model was solved using two
algorithms, AGASA and SA. The population size is initialized to 500, the
maximum evolution generation is initialized to 3000, the temperature
update coef�icient is initialized to 0.97, and the termination
temperature is initialized to 0.001. The stability of the two algorithms
was tested by repeated calculation of the model for 10 times, and the
calculation results are shown in Fig. 7.5. As shown in the table, with the
increase of model size, the stability and convergence of SA are not ideal
and tend to be stable after 300 iterations. However, each time the
�indings are inconsistent, the algorithm’s calculation procedure missed
the perfect solution, creating a signi�icant danger of a local optimum. In



contrast, AGASA showed good advantages in stability and convergence
due to the reduction of model size and the introduction of heuristic
rules. As a result, the AGASA solution suggested in this chapter may
more effectively address the issue of UAV detection in oil and gas
pipeline networks. The inspection pathways obtained by AGASA are
depicted in Fig. 7.6, and they total 82,389 km in length.

Fig.	7.5  Results of SA and AGASA’s calculations

Fig.	7.6  UAV inspection route for the network of oil and gas pipelines (the �irst and second UAVs
are indicated by the pathways in brown and blue)



7.5	 Conclusions
For oil and gas pipeline networks, a brand-new inspection path
optimization technique is put forward in this chapter. The shortest
inspection path possible was chosen as the aim function in a mixed
integer nonlinear programming model that also took into consideration
the mission environment and the UAVs’ safety performance. For the
part on solving models, we recommend a two-stage solution method. In
the �irst step, the pipeline is split into multiple nodes dependent on the
UAV’s visual capabilities. The model is solved using AGASA, which
incorporates heuristic rules, in the second step. Finally, the model is
solved by combining the two methods SA and AGASA. The outcomes
demonstrate the suggested AGASA algorithm’s strong convergence and
stability.

The majority of oil and gas networks may have their inspection path
planning optimized using the technique described in this chapter. It
should be noted that this chapter does not take into account the
variations in inspection between high-leakage risk locations, highly
inhabited areas, and unpopulated areas and instead assumes that each
inspection node is equally important.
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Abstract
The sustainable and reliable supply of natural gas has become a critical
global worry about economic, political, and technological causes
because of the realization of the signi�icance of networks of natural gas
pipeline for energy security. However, a number of variables, including
stochastic demand �luctuations, unexpected changes in supply capacity,
and random pipeline failures, affect the oil and gas pipeline network’s
supply capacity. People must therefore evaluate supply security from a
probabilistic rather than deterministic standpoint. This chapter
introduces a methodical approach for evaluating natural gas pipeline
networks’ supply reliability. The created technique combines stochastic
processes, graph theory, and thermal–hydraulic modeling while taking
complexity and uncertainty into consideration. The case study shows
that a network of gas pipelines is taken into account, and the outcomes
are thoroughly studied.
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8.1	 Evaluation	of	Natural	Gas	Pipeline
Networks	for	Supply	Reliability
Networks of natural gas pipelines play a crucial role in coordinating
supply and demand for the fuel. In the past ten years, there have been a
number of unforeseen natural gas supply outages, which have had a
signi�icant impact on global economic and social stability [1]. The
dependable and steady supply of natural gas has evolved into a critical
global concern for political and technological causes. This illustrates the
signi�icance of the natural gas pipeline grid to energy safety.

The chance of a system, subsystem, or component “to ful�ill a
necessary features in de�ined conditions and for a stated amount of
time” [2] is the most frequently recognized qualitative de�inition of
reliability. However, we apply the supply function of the network of
natural gas pipelines as judged by the reliability criterion for large
infrastructure systems.

System reliability estimates have traditionally been calculated using
system reliability analysis techniques like logic modeling and system
deconstruction. When pertinent historical data are available, statistics
is utilized to generate the reliability index [3].

Traditional reliability theory is unable to account for the complexity
(structural and dynamic) of massive infrastructures that span vast
geographic areas, run under a variety of situations, and contain a
sizable number of heterogeneous components [4].

There are a wide variety of ways for simulating the random
properties of complex infrastructures, including railway systems,
electrical grids, and natural gas pipeline networks. To represent a
complex system with uncertainties, stochastic techniques, such as
Monte Carlo-based methods, Markov process-based strategies [5–8],
are frequently utilized. To describe the interdependencies among
essential infrastructures and the global repercussions of various
scenarios, probabilistic dynamic modeling is used [9].

Recently, a powerful method for modeling transportation
infrastructure systems as graphs and analyzing connection aspects has
been suggested. This method research on vulnerability and reliability
using graph theory. Models of the structure and function make up a



structural-function model. The function model represents how the
system behaves, whereas the structural model explains how the
physical items in the system are represented as edges and nodes. The
functional modeling might be simpli�ied and abstracted, like �low-based
methodologies, or it could be engineering-oriented, like the function
model for connecting the gas supply to the grid [10].

In several studies, such as GEMFLOW [11] and MC-GENGERCIS [12],
the signi�icance of taking into account a gas supply system’s operation,
function, capacity, and limitations is also stressed.

The created framework combines approaches for tackling the issues
from several angles, including environmental, functional constraint,
topological, and dynamic. The technique can help engineers and
management estimate safety margins to provide customers with
comprehensive solution from a practical standpoint.

8.2	 Mathematical	Model	for	Reliability
Evaluation
The established method is broken down into three sections for ease of
understanding: system modeling, unit failure analysis, and reliability
evaluation. Figure 8.1 depicts the framework, and the next chapter is
structured as follows.



Fig.	8.1  Developed methodology’s framework

In unit failure analysis, two approaches are used: both the previous
data-based approach and the failure mechanism-based approach.
Pipeline failure probabilities vary with respect to both space and time.
The others’ percentage, on the other hand, is steady since the
environment in which they function has little variation.

Several techniques have been developed to mimic the effects of unit
stochastic failures in the natural gas industry delivery networks. This
chapter simulates stochastic changes in the pipeline network system
and evaluates the implications while taking complexity and uncertainty



into consideration. Stochastic processes, graph theory, and thermal–
hydraulic modeling are some of the techniques used.

8.2.1	 Evaluating	the	Likelihood	of	Unit	Failure
8.2.1.1	 Analysis	of	Pipeline	Failures
Natural gas pipeline failure can be caused by a variety of circumstances.
According to the European Gas Pipeline Incident Data Group (EGIG),
30–40% of pipeline failures are due to material failures and corrosion;
the other causes include external factors including maintenance tasks,
erroneous operations, and outside intervention [13]. According to this,
a crucial component of pipeline failure analysis is corrosion analysis.
Using statistical failure data can provide worldwide estimates of
pipeline reliability; however, this may not be correct for pipelines in
different situations due to the different factors that affect structural
integrity. Calculating a pipeline’s failure probability requires taking into
account all of its unique operational characteristics, including pipeline
speci�ications and failure modes. Figure 8.2 depicts the analytical
procedure, which is further explained in the paragraphs that follow.

Fig.	8.2  Method’s structure for analyzing pipeline failures



A corrosion occurs in natural gas pipeline that has �laws may fail in
one of three ways, either a minor leak, a massive leak, or a rupture, all
of which reduce the pipeline’s transportation capability to varying
degrees. Limit state functions are used to model failure mechanisms.
The following is a de�inition of the limit functions:

(8.1)

The function of the limit state L1 represents a �law that has broken
the pipe wall, in which  and depth represent wall thickness and depth
of leakage, severally. According to the literature [14], standard
industrial practice indicates that whenever a fault depth exceeds  ,

(8.2)

where  provides the corrosion defect’s rupture pressure under
internal pipeline pressure  . The limit state of a pipe break with
plastic collapsing as a result of internal pressure is de�ined by this limit
state function,

(8.3)

where  is the pipe rupture pressure with an indeterminate
extension of the defect in the axial direction.

Figure 8.3 displays a schematic of the three different failure
mechanisms: small leak—  , large leak—

 , and rupture—
 on the basis of which Monte Carlo

simulation may be used to determine the likelihood of each failure
mode and to determine the inner pressure  . TGNET is an of�line
simulation program for natural gas pipelines, used to model the
thermal–hydraulic nature of natural gas transmission pipelines.



Fig.	8.3  The schematic of the distinct failure modes

The probability of failure due to various mutually exclusive causes
such as corrosion, misuse, external disturbances, and maintenance
activities is summed to �inally assess the pipeline failure probability.

8.2.1.2	 Estimation	of	the	Station	Failure	Rate
LNG ports, compressor stations, and natural gas storage facilities all
operate under relatively steady circumstances as compared to
pipelines. Therefore, the statistics of historical data are used to
determine their failure probability.

8.2.2	 Creation	of	a	Stochastic	Capacity	Network	Model
In order to illustrate how gas pipeline networks’ operational conditions
stochastically changed over time due to units that failed suddenly, a
stochastic capacity network model has been created.

The following are the inputs used to construct the model:
a.

Information about the pipeline network’s geography.  
b.

Data about the gas composition.  



c. Pipeline characteristics, such as pipeline length and pipeline
diameter.  

d.
Compressor station speci�ications: compressor technical
speci�ications, compressor allocation.

 
e.

The probability that the units may switch between various
functioning and failure states.

 
Figure 8.4 depicts the model creation process:

Fig.	8.4  Modeling stochastic capacity network development process

8.2.2.1	 Capacity	Network	Model
To explain the structure of the system and the current status of its
transportation capacity, a capacity network model is constructed in this
case. The capacity network model represents pipelines as arcs



connecting nodes that represent compressors, LNG terminals, gas
storage facilities, and demanding sites. The directions of gas �lows are
established, and the capacity network model is guided.

Pipeline studio—TGNET’s thermal–hydraulic model is used to
determine the capacity weights, which indicate the transit capacity of
pipelines (from Energy Solutions). Pipeline Studio is a business
software and engineering solution for pipeline management design that
includes graphical settings, analysis tools, as well as a simulation
engine with performance that has been shown in the �ield.

8.2.2.2	 Models	for	Natural	Gas	Pipeline	Network	Units’
Stochastic	Capacity	State	Transitions	Based	on	Markov
Chains
The capacity states of the network units’ random variations are
modeled using Monte Carlo simulation (MCS). The status probabilities
are ultimately determined by solving an equational system, and the
state transition rates are formally stated as probability matrices. This is
what we mean when we talk about a Markov process.

For further details on the Markov process and Monte Carlo
simulation, see the �lowchart in Fig. 8.5:



Fig.	8.5  Flowchart for the discrete Markov process development of a single unit in the pipeline
network in MC simulation

(1)
Starting time is set t = 0, mission time T = 1 year and time step Δt 
= 1 month.

 
(2) The units are �irst con�igured to their initial conditions. On

account of the initial conditions, the capacity network model at t 
= 0 is produced

 



= 0 is produced.
(3)

Based on the current states and the transition probability
matrices, sample the unit states up to task time T in the interval t 
= t + Δt.

 

(4)
The capacity network chains for this simulation year should be
recorded. A chain of capacity network states that take place
during the course of the simulation is referred to as a capacity
network.

 

(5)
Duplicate Steps (2) to (5) for Nm times (Nm = 106).  

(6)
The output for the capacity network model chains is required.  

Pipelines can exist in one of three states, each of which corresponds
to a different capacity: normal, degeneration (little or major leak), and
interruption. The normal state has the option of bi-univocally changing
or remaining constant with the other states. The states of interruption
are returned to their starting levels in the subsequent simulation time
trial. Probability of failure, the connection stated above (shown in
Fig. 8.6), and historical data are used to construct the transition
probability matrices of pipelines.

Fig.	8.6  States and pipeline state transition rules

According to practical experience, two sorts of unexpected
occurrences are set. In addition to the normal operating state, there
may also be interruptions due to events like complete station failure
and degeneration due to compressor failure, which are also referred to



as such in this work. Understanding the “compressor failure” incidence
is simple: just the compressors malfunction, while all other station
components function normally. For another, when degeneration occurs,
the compressor station will still be able to transport gas, but the
capacity of the neighboring pipes will be lowered to a speci�ied level,
which may be calculated by thermal–hydraulic modeling. The ability to
pressurize and transfer is both zero at the interruption stage. Incorrect
operation and maintenance work are only two examples of the many
causes of interruption. Again, the transitions between compressor
station statuses apply in Fig. 8.5.

On the basis of the de�ined stochastic models, the weights of the
arcs in the capacity network model change stochastically over time. The
stochastic �low network model combines the capacity network model
and the units of stochastic model in order to depict the dynamics of the
natural gas pipeline network from a systemic viewpoint.

A straightforward illustration of the capacity network model and
the system’s stochastic temporal development is shown in Fig. 8.6. In
Fig. 8.7, a, b, and c (a’, b’, c’) are the arcs weights, which stand in for the
pipelines’ capacity.

Fig.	8.7  Illustration of a stochastic network model

8.2.3	 Establishment	of	the	Methodology	for	Capacity
Analysis
The network transmission capacity will decrease as a result of
stochastic unit failure, resulting in a de�icit of supply for consumers.



The capacity network model is used to calculate the consequences.
Every Markov chain time step requires a new computation since the
capacity network’s constituents vary stochastically. Because the
stochastic simulation uses a rather lengthy time step, transient
conditions are not taken into account here (month).

The computation of the consequences involves two phases:
a.

Planning for the pipeline network’s natural gas transmission
direction.

 
b.

Maximizing the transmission capacity.  
Figure 8.8 depicts the two components of the modeling process to

illustrate how stochastic analysis and consequence analysis relate to
one another in this study.

Fig.	8.8  Process consequence and gas network system capacity analysis

8.2.3.1	 Building	the	Network’s	Natural	Gas	Transmission
Path
In this chapter, we argue that the most important factors in gas
transmission planning are cost effectiveness and supply distance.
Political factors and societal repercussions, for example, are not taken
into account in this chapter. Here is how it works.



A. “Standard	cost	matrix”	calculation 
The “standard cost matrix” is an adjacent matrix built using the

pipeline network structure and the “standard cost” on each arc. The
length of the pipeline and the cost of transmission affect what is known
as the “standard cost,” which is computed using Eq. (8.4). To distinguish
the relative signi�icance of these two factors, weights of importance of
these characteristics are applied for the computation of “standard cost”:

(8.4)

where Lij is the length of the pipe from node i to node j (km); Qij is the
expected volume of gas transported from node i to node j (MCM); c is
the cost of natural gas transportation ($/(km·MCM)); α and β are the
importance weights of distance and cost of transmission, respectively;
Cij is the optimization factor including cost and distance ($). Even while
the “standard cost” is $, it is not the same as the real cost.

The proposed “standard cost” is more suited to current
management concepts under various circumstances as compared to
real cost. The cost is not usually the most crucial aspect to take into
account in the actual planning process for gas transmission. Due to this,
we decided to use the “standard cost” as the optimization’s goal, and
the various management concepts are implemented by varying the
weights in Eq. (8.4).
B.

Determining	the	direction	of	gas	�low 
With the exception of other sources, the “optimal pathways” from

each gas source to every other node in the network are determined for
transmission planning using the Floyd algorithm and the “standard cost
matrix.” A graph theory method called the Floyd algorithm is used to
search “the shortest route” between different nodes, where the
de�inition of “shortest” depends on how the weights on the graph’s arcs
are determined. Our “shortest way” calculation considers the lowest
“standard cost,” and as a result, it re�lects the “optimal path” taking into
account both transmission distance and cost.
C. Gas	transmission	planning



 
In this section, it established what kind of clients a gas source can

serve. The closest demand sites with the best economic ef�iciency will
receive preference, per step B, according to a source. The program then
determines if the source’s capacity has been reached: The algorithm
will look for the next unmet demand location in the sequence
discovered at step B if there is still unutilized capacity and unhappy
consumers. Until the source’s remaining capacity is zero or all clients
are content, this procedure is continued.
D.

Adjustment	under	different	conditions 
The “standard cost matrix” will alter along with the capacity

network as it stochastically changes over time. As a result, following the
unforeseen occurrences, the gas transmission task in the network
should be changed. The procedures from A to C are carried out at every
time step in order to react to the present network environment because
these occurrences happen at random times.

8.2.3.2	 Transmission	Capacity	Calculation
Finding the optimal distribution strategy becomes more challenging for
large-scale and complicated networks. Resource distribution frequently
involves the application of game theory and operational research
techniques. Additionally, graph theory has become a useful alternative
when taking into account the necessity of computing ef�iciency.

In graph theory, the computation of supply capacity under
unforeseen circumstances is transformed into a maximum �low issue.
Calculating the greatest capacity of transmission between two nodes in
a transportation network is the goal of a maximum �low issue (source
and sink). The maximum �low problem has been tackled in graph
theory using a variety of methods, including the Ford-Fulkerson
algorithm, the Dinic algorithm, and others. The Ford-Fulkerson method
is applied in two steps:

Search for edges with capacity that connects the source and sink.
Continue searching until no more �lows can be added to the path.



Two restrictions should be adhered to during the search:
A node’s entire �low into and out of it must equal one another.
The edge �low does not go in the wrong direction and stays within
permitted limits.

In a gas network, there are many sources and sinks, and any �low
from a source can be transferred to any sink. In graph theory, this is
referred to as a multiple sources and sinks issue. This issue may be
simpli�ied to a one-source, one-sink problem by supposing a “super
source” and “super sink” connecting with every source and sink by
edges of unlimited capacity.

8.2.4	 Supply	Reliability	Assessment	of	Natural	Gas
Pipeline	Network
A natural gas network’s supply reliability is evaluated on both a global
and an individual aspect. The individual aspect indicates the network
system’s capacity to meet consumer needs, while the global aspect
represents the network system’s functional integrity. The former factor
is more signi�icant when assessing supply reliability. Customers might
have different demands, which is a critical part of supply security.

Similar to what is done for electrical grids, indices are constructed
from three factors: time, suf�iciency, and probability. The frequency of
each customer’s displeasure is estimated using reporting probability
indices (using Eqs. (8.5) and (8.6)), which are also used to predict how
well the gas network will be able to please each customer in the case of
unanticipated situations. Adequacy is used to record the effects of
unforeseen occurrences on the system and each individual consumer.
The created indices are meant to aid in quantifying supply security
management concepts.
A.

Indices of probability 
In pipeline supply networks, reliability might be determined

differently for various clients. In this example, the rate of shortage
(ROS), which is similar to the traditional failure rate, is used to show
the reliability of supply at a demand site using an exponential
estimation of Eq. (8.5). Equation (8.6) provides an estimate of ROS.



(8.5)

(8.6)

B.
Measures of adequacy 

(8.7)

Global	average	natural	gas	shortage in Eq. (8.7) refers to the overall
likely lacking in gas provided by the gas pipeline system in one month.
The total quantity of worldwide gas shortages is the total amount of gas
shortages that were simulated.

(8.8)

Average	number	of	unsatis�ied	customers is de�ined in Eq. (8.8) as
the monthly average of consumers whose requests are not entirely met
by the pipeline network. The term “sum	of	unhappy	customers” refers to
the total number of disappointed nodes (or customers) throughout all
simulations.

(8.9)

In Eq. (8.9), “average	natural	gas	of	a	customer” refers to the average
monthly natural gas shortfall for one customer. The total quantity of
natural gas shortage by one customer during the simulations is referred
to as the “sum	of	natural	gas	shortage	of	a	customer.”
C.

Index of duration of shortage 
(8.10)



The length of the shortage event is sampled at random in Eq. (8.10).
The average length of a customer’s monthly shortage situation is
referred to as average	shortage	duration.

8.3	 Case	Study
An imaginary natural gas network has been used to test the
applicability of the suggested approach. That assume accurate and
consistent information about the pipeline system, such as pipeline
speci�ications, client requests, and ability to deliver gas. Figure 8.9
displays the network.

Fig.	8.9  Network design for natural gas transmission

Monitoring the operating point and making sure it is contained
within the storage envelope allow for the real using the natural gas



storage facility. However, the LNG functioning stock and regeneration
capacity place a restriction on the LNG terminal’s operational area.

Thermal–hydraulic simulation was used to determine the
transportation capabilities of pipelines under unanticipated conditions.
Pipeline’s thermal–hydraulic models were created using TGNET’s
professional software with the recommended and assumed data.

The failure risk of a pipeline is estimated as the total of all the �laws
that are found on it. The Poisson process is used to determine the
number of �laws in a pipeline per kilometer. The PCORRC model (Eqs.
(8.11) and (8.12)) and the Kiefner model (Eq. (8.13)) are used,
respectively, to estimate the rupture pressure and burst pressure in the
limit functions.

(8.11)

(8.12)

(8.13)

in which the signs in the equations are: M—the Folias factor, which
explains pipe bulging before collapse;  —the �low stress, (MPa), yield
strength-related material property; L—defects length, (mm); D—
diameter of pipe, (mm); Wt—Wall thickness of pipes, (mm); Prupture—
rupture pressure during failure, (MPa); Pburst—pressure of failure
during burst (MPa);  error term for a multiplicative model.

Based on TGNET, a thermal–hydraulic study is used to calculate the
internal pressures of pipes. To disperse an operation pressure for every
�law, we randomly choose different space places.

Engineers can evaluate the failure probability of various modes for
LNG terminals and empirical evaluation.



For the natural gas pipeline system under discussion, a stochastic
capacity network model was created based on the �indings of the unit
failure test and the capacity estimates. The development process is well
illustrated.

Three different scenarios are used to evaluate the supply
dependability.
A.

Every natural gas supply source is operating normally. This is the
standard scenario.

 
B.

The system eliminates LNG terminal A, which had a maximum
capacity of 7.1 MCM/d.

 
C.

Removed from the system is LNG terminal B, which has a maximum
capacity of 10 MCM/d.

 
D.

The system removes the UGS with a maximum throughput of 4
MCM/d.

 
E.

The system is free of the pipeline that linked nodes 10 and 2.  
The states or supply capabilities of the units might �luctuate

erratically in various circumstances, as represented by the Markov
chains. The Underground Gas Storage (UGS) and LNG terminal are all
predicted to experience function degeneration at rates of 0.020, 0.015,
and 0.015 (per month), according to the operator of a natural gas
pipeline �irm. The likelihood of the LNG terminal and UGS experiencing
functional interruption is estimated to be 0.001.

For each scenario, one million Markov chains modeling were
created, and the state of the supply–demand situation was calculated
using the approach created for each one. While the statistics on natural
gas �low and demand were given on a regular basis, the modeling was
run on a monthly basis.

The three scenarios’ cumulative global capacity distribution
functions are displayed in Fig. 8.10.



Fig.	8.10  Supply dependability as re�lected by the CDF of the world’s supply capacity

Table 8.1 provides information on the supply capacity for each
scenario, including the max, min, mean, and standard deviation.

Table	8.1  Information on the global supply capacity

Scenes Max	(MCM/d) Min	(MCM/d) Mean	(MCM/d) Std

A 41.21 34.08 41.20 0.061

B 39.21 30.42 39.20 0.072

C 38.58 31.45 38.56 0.061

D 37.13 30.00 37.12 0.059

E 34.08 29.58 34.07 0.056

The study’s �indings indicate that the pipeline network under
consideration has a strong capability to sustain the world’s supply at
41.21 MCM/d. Jumps in the CDF are correlated with the impact of
random, unforeseen occurrences on the supply capacity of the world.
Most “CDF jumps” are small in the probability value range from 10–4 to
10–2, whereas visible “jumps” are seen in the probability value area
from 10–6 to 10–4. We can conclude that, even in the event of
unanticipated, stochastic unit failures, the gas pipeline network under
consideration can dependably provide gas to the consumers.



By comparing the two scenarios, we can see that LNG terminals at
various locations play distinct players in the system’s supply ability and
have various effects on various consumers.

Figure 8.11 provides a study of supply reliability and crisis by
combining probability and consequence.

Fig.	8.11  Consequence/probability plot for the supply of gas reliability/risk analysis

The gas shortage, which has a chance of about 10–6 and would
affect about 7.2 MCM/d of gas, would be the worst outcome under
normal circumstances. The majority of the effects are centered in the 0–
2 MCM/d range, and over half of them have probabilities less than 10–
4. The effects of scenes B and C shift toward large amounts of service
loss. The average of the global shortfall and the average of dissatis�ied
customers are computed to determine how much service has been lost.
With the results presented in Table 8.2, operators and managers may
determine if a system or development is required by measuring the
potential loss under the given circumstance. Additionally, one can
discover the various effects of various forms of unit failure by
contrasting the outcomes of situations A, D, and E. While eliminating a
pipeline that has a local, more serious consequence, removing the UGS



has a relatively wide-scale. This �inding indicates that the pipeline grid
is �lexible and has strong global resilience, but some customers are
exposed due to the vital pipes that connect them to the sources.

Table	8.2  Reliability of the global system supply

Scenario Average	global	shortage
(MCM/month)

Average	amount	of	unsatis�ied	customers
(per	month)

A 0.0049 0.0118

B 0.0365 1.0128

C 0.0479 2.0118

D 0.0743 3.0103

E 0.1285 0.9907

However, due to the variations in demand, geography, and other
properties across consumers, the ability to service all of them reliably
does not necessarily equate to high supply reliability for each individual
client (Fig. 8.12). Therefore, in order to obtain a more thorough result,
it is necessary to make a speci�ic assessment of each location of need.

Fig.	8.12  Supply capacity at various demand locations in scenario A

The statistical parameters of increased supply at each demand
location are computed using the simulation results and data on each
customer’s demand.



Two levels of scarcity are used in the analysis: a minor shortage
(0.75demand supply capacity requirement) and a severe shortage
(0.75demand supply capacity requirement). Every demand location has
two degrees of supply dependability, called urgent reliability and
normal reliability, which are determined by the rates of severe shortage
and moderate shortage, respectively.

Customers’ perspectives on dependability provide a more
comprehensive and thorough evaluation of the system’s capacity to
reliably service each client. Along with probability results, quanti�ied
losses taking into account the amount of gas and the length of the
passive effects are also supplied for each customer, which aids in
identifying issues that are challenging to identify from a global
perspective, like those discussed in the previous paragraph.

8.4	 Conclusions
In order to assess the complex link between various in�luencing
elements and failure modes for unit failure analysis of pipelines,
structure reliability analysis methods are applied. The outcomes of an
internal examination can be used to gather the data for limited state
functions. Failure analysis is carried out based on historical data for
compressor stations and natural gas storage equipment.

Based on random processes and graph theory, a stochastic
simulation model is built for the investigation of natural gas network
capacity and supply consequences. System description, planning, and
consequence analysis all employ graph theory as their foundation. The
Markov process modeling is used to mimic the system’s stochastic
evolution through time.

For the supply reliability evaluation, which considers the global
system and individual consumers, reliability modeling and principles
drawn from the reliability assessment of the power system are
employed. The statistical characteristics of system capacity are used to
estimate global supply reliability; based on demand data and
consequence analysis, supply reliability analysis for speci�ic clients is
carried out.

In the future, the developed method will be expanded upon and
enhanced in a number of ways, examining network capacity in



particular and the effects of unit failures while taking temporary
physical processes and operations into account. Additionally, the
methodology for modeling will take probabilistic load demand into
account.
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Abstract
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frequency domain transformation, are good at forecasting changes in
data points at a certain instant in time, but they are unable to detect
and identify the system’s operational condition over an extended
period of time. The operational status of an oil and gas pipeline may be
accurately identi�ied using a data-driven strategy for identifying time
series patterns that is introduced in this chapter. The monitoring
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operation management of product oil pipelines.
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9.1	 Risk	Prewarning	of	Oil	and	Gas	Pipelines
The conventional approach to evaluating system reliability can be
based on the dependability of the system’s components and
supplemented with models from conceptual network theory. It is
challenging for them to use abstract topological structures to represent
dynamic and complicated systems.

Some stable physical models are described by state-space
equations. Zeng et al. [1] proposed a stable approach with bi-
directional energy transfer to analyze the energy �low in IESs; however,
they overlooked the optimization of various energy systems. The
energy �low optimization was then taken into consideration in a
condensed version by Wang et al. [2] using a linearized modeling
approach. When modeling the IES, linear programming used by
Qadrdan et al. [3] is to solve non-linear problems.

The bi-direction energy �low was disregarded despite the adoption
of the IES data-driven model [4]. For this reason, an effective data-
driven approach is suggested in this chapter that can precisely describe
the behavior of complicated bi-directional IESs.

In order to employ realizations of samples with unknown variables
in the reliability evaluation in view of these distributional functions of
probability, one may use the Monte Carlo method. To describe the
inherent unpredictability of the power demand, Zio et al. [5] employed
a probabilistic load model. In the literature [6], uncertain heat loads are
represented by a normal distribution, but the gas transport capacity is
represented by a lognormal distribution. Su et al. [7] use the Markov
process to assess the dependability of the IES’s energy deliver. To
address this problem, Ciupăgeanu et al. [8] limited their assessment of
the impact of integrating substantial percentages of renewable energy
on system performance and dependability to standard scenarios.

Data in time series are therefore required for real-time
dependability evaluations. Clegg et al. [9] studied the impact of
electricity to natural gas conversion on operating system reliability
using historical daily demand and forecast renewable energy
production. In order to increase the dependability of the energy supply
in IES, Alabdulwahab et al. [10] examined the cooperation between the
restricted electrical and buildings for storing natural gas.



To explain the uncertainties in variables, probabilistic forecasting
techniques can provide densities of probabilities, prediction intervals
(PIs), and quantiles. Pinson and Kariniotakis [11] created a method for
calculating the intervals for the predictions (PIs) of wind power
generation that is founded on fuzzy inference and adaptive resampling.

Diagnostic and degradation analysis techniques for systems and
components are based on process variables, such as those found in
rotating equipment and wind systems. For complex system
dependability evaluations based on health status indicators, dynamic
Bayesian networks are frequently utilized. It is dif�icult to assess the
functioning status of the systems based on several process factors.
Combined condition indicators, the hidden Markov Model (HMM) may
calculate the system probability distribution and take time-dependent
internal relations between variables into account.

With the help of the suggested strategy, the uncertainty issue may
be resolved by animatedly predicting the mathematical distribution of
important parameters over time. On the basis of the process variables,
HMM is offered to analyze the functional states of the system. It is
possible to describe relationships between states and variables using
the formats of hidden state and transition probabilities.

9.2	 Methodology
In order to assess the dependability of the energy supply in IES, a
systematic framework is created. Data predicting, IES modeling,
modeling of system functional states, and supply dependability
evaluation are the four steps of the technique, as illustrated in Fig. 9.1.



Fig.	9.1  Flowchart of the proposed framework

Step 1. In order to predict the renewable energy output PI, a
probabilistic forecasting model was utilized. This model is based on
the ELM and the pairwise bootstrap method.
Step 2. A dynamic simulation model based on stacked autoencoders
is used to estimate how well the IES will perform dynamically. As



inputs, the probabilistic forecasting model from the earlier step uses
samples of the prediction data.
Step 3. Using the outputs from the dynamic simulation model from
the step before, such as delivery pressure at the customer nodes,
total gas requirements, using HMM to predict the operational state of
a system.
Step 4. Continue using Step 2 until Order Statistics has got the
necessary percentiles for each state’s probability distribution.
Step 5. Finally, the outcomes of the system functional states are used
to determine the energy supply’s dependability.

9.2.1	 Probabilistic	Forecasting	Model
For a system to operate effectively and dependably, projecting
renewable energy output and demand must be accurate and
dependable. The LASSO-QRNN model, the aggregated probabilistic
forecasting approach, the Gaussian process quantile regression model,
and the exponential smoothing method are just a few of the
probabilistic forecasting methods that have been created. Faster than
previous learning algorithm-based forecasting techniques, the
bootstrap-based extreme learning machine (BELM) can estimate the
PIs. Figure 9.2 depicts the BELM architecture for constructing PIs. By
resampling from the data, the paired bootstrap is utilized to acquire the
practice data. The ELM can then produce output estimates. The PIs can
now be predicted.



Fig.	9.2  Framework of BELM

9.2.1.1	 Extreme	Learning	Machine
Rather than utilizing the gradient-based learning strategy, the input
weight and biases of the single hidden layer feedforward neural
network ELM are chosen at random. The output weight may be
calculated using a straightforward matrix formula. The following is an
explanation of the ELM training steps:
(1)

Generated the hidden layer nodes and input weights randomly.  
(2)

Based on the hidden layer’s neuron activation function, determine
the output matrix H.

 
(3)

The weights between the output layer and the concealed layer
should be calculated.

 



9.2.1.2	 Prediction	Interval
The ELM may be used to identify the connections between the inputs
and outputs, after which the pairs of bootstrap technique are used to
estimate the PIs. Model underspeci�ication and noise in the data are the
two basic categories of defects that may be taken into account. The
average value of the guesses may be taken into account as the actual
regression, given the bootstrapped pairings D* based on the initial
training data.

9.2.2	 Dynamic	Model	of	IES
The model’s central concept is to recreate the input at the
autoencoder’s output, as seen in Fig. 9.3. Encoding and decoding are the
two pieces that carry out this procedure. The encoder collects the
features of the data and maps the input to the hidden layer. The
collected features are remapped to the original input space by the
decoder during a reconstruction process.



Fig.	9.3  Basic autoencoder model’s structure

Encoder and decoder operations can be shown as:

(9.1)

(9.2)

the  and  represent the inputs and the resulting
redevelopment; z represents the indirect representation E and D
represent the activation works in accordance with the parameter  and

 , respectively, including deviation vector and weight matrix. The
mathematical expression of the loss function, which is used to rebuild
the raw inputs from the compressed characteristics, is as follows:

(9.3)



9.2.3	 Modeling	of	System	Functional	States
9.2.3.1	 HMM
While accounting for a number of IESs features, HMM is used to analyze
the system functional states and determine the likelihood function that
occupies every functional state. The availability of the system is
determined by the likelihood of the system’s functioning states.

Make a functional state-space de�inition  , ,
where the Gaussian mixture model (GMM) is followed by the functional
indicator vector Di.

Equation (9.4) may be used to analyze the stochastic properties of
the time series data and model the combined variable probability
distribution:

(9.4)

where  and  represent
the observable and latent vector; H is how many states are there in a
Markov chain; E is the number of observational variables that may be
present in each state; π is the primary probability factor; A is the
probabilities matrix for state transitions, whose components are the
chances that two hidden states will change;  is the parameter
associated with the observation distribution; the compact symbol

 is used to describe the set of parameters.  can be
de�ined as  , where  is the probability of the
mth mixture under the hth state;  and  are the mean vector
and covariance vector of the mth mixture in the hth state, respectively.
Based on the cumulative distribution function,  can be calculated by
Eq. (9.5):

(9.5)



The expectation maximization (EM) technique may estimate the
parameter, mean vector, and covariance vector based on historical data.

The state occupancy probabilities  and  are
iteratively determined in the expectation stage.  can be
decomposed into a forward term  and a backward term  by
Eq. 9.6:

(9.6)

Another latent variable,  , dominates the probability distribution
of the observation symbol in GMM-HMM.  can be obtained by
Eq. 9.7:

(9.7)

For maximization, Eq. 9.8 re-estimates the parameters:
(9.8)



According to the functional indicators, it is feasible to calculate the
distribution of occupancy probabilities for every system functional
state. The likelihood of being in a particular condition at a particular
moment can be thought of as the forward term  . After that, using
the variables of the continuous time process, it is feasible to calculate
the system’s properly functioning states’ probability distribution at a
certain time.

9.2.3.2	 Order	Statistics
Here, Order Statistics (OS) is employed to lessen the necessary
computing load. The result y should indicate the likelihood that
functional state h will exist at time t0. For various input vectors X = {x1,
x2, x3, …, xQ}, the corresponding output vectors Y = {y1, y2, …, yQ} may be
produced with	Q runs of the GMM-HMM. By using the OS technique, an
envelope of the likelihood of occupying a functional state at time t0 may
be de�ined at a certain degree of con�idence. The output vectors Y = {y1,
y2, …, yQ} are organized as Y* = {y1, y2, …, yq} in decreasing value order.
The qth member yq has a chance of ζ being higher than the unidenti�ied
real γth percentile yγ. The actual value of yγ provides some assurance
that the value will be less than yq. This means that the real yγ will
likewise be lower if the value of yq is less than a certain upper
threshold. Additionally, yγ may be above the lower barrier as shown by
Eq. (9.9):



(9.9)

where  is the γth percentile.
The Bracketing technique may be used to determine the required

sample size Q once the con�idence level has been established. Following
is a description of the steps:

Step 1: Determine γ1, ζ1 and Q.
Step 2: The output Y may be approximated using the vectors X
sampled from the relevant distribution.
Step 3: The inputs will be regenerated each time Step 1 is repeated G
times. The outcomes can be found as  (g = 1, 2, …, G, n = 1, 2, …, Q).
Step 4: The (ζ|γ) approximate percentile  of each output sample
can be computed.
Step 5: The median  of the G(ζ|γ) percentile ranges

 has been applied to indicate the guessed
amount.

9.2.4	 Supply	Reliability	Analysis
Two processes make up the supply reliability evaluation process:
estimating the functional state probability distribution and computing
the system reliability index. HMM and OS complete the �irst stage, as
was already described. The dependability of IES is then examined in the
following phase using a combination of an adequate indication and a
security indicator.

The adequate indicator shows how successfully IES manages to
maintain the supply–demand connection within the predetermined
tolerances. Equation (9.10) suggests the increased indicators (9.10):

(9.10)

where  is quantity of loads;  is the client node’s failure rate. The
estimated max shortages of gas and power, respectively, are denoted by
the abbreviations EMSGt and EMSPt.



(9.11)

where  and  are the probability interval’s lower and upper
bounds in the state h.  is the likelihood at time t.  is what the
associated variables were worth at time t.  and  are the
linked variables’ lowest value and maximum value, respectively.  is
the risk coef�icient.

The dependability index, CDI, measures an IES’s capacity to function
as needed even in the event of an accident within a de�ined period of
time. Equation (9.12) provides a description of the equation:

(9.12)

in which RS stands for relative score; W re�lects a variety of variables,
including �low rate, S is a sort of index that contains the probability
distribution’s upper and lower bounds, interval, and range; Wt is the
weight; MV is the index’s time value s; WorstMV and BestMV are the
index’s worst values and highest values s, respectively, the results of
which are derived from the past data. A weighted average of the relative
scores may be used to determine CDI over a speci�ic time period.
Equation 9.13 is as follows:

(9.13)

where Wt(W) is a weight of W, which can be calculated by the principle
[12].

9.3	 Case	Study



9.3.1	 Data	Description
In this chapter, ENTSOE is used to retrieve historical data on electricity
usage and renewable energy production. The statistics on gas
consumption are compiled from �igure sharing, an open-access public
database.

9.3.2	 Description	of	the	IES	Model
The ef�icacy of the suggested approach is assessed using a proven bi-
directional IES model. Figure 9.4 displays the IES model, which consists
of an IEEE-12 test system and a 12-node natural gas network. Node N1
serves as a gas source for the majority of the gas. There are wind farms
at Bus B7 and Bus B10, solar power generators at Bus B15, gas-�ired
generators at Bus B9 and Bus B13, a coal-�ired power plant at Bus B4,
and other electrical infrastructures that are built to accommodate the
power needs. Additionally, three separate pieces of machinery—gas-
�ired generators, gas compressors, and P2G—joined the electrical grid
with the gas system.



Fig.	9.4  IES model’s architecture

By simulating this model, it is possible to acquire process
parameters such as voltage, �luid velocity, energy losses, and pressure
difference. Table 9.1 presents the four groups into which they are
divided.

Table	9.1  Process variables connected to four groups

Group Process	parameters	(functional	indicators)

A Rate of gas source �low m3/s

B Pressure of nodal gas kPa

C Loss of transmission kW

D P2G energy conversion m3/s
GPG energy conversion kW



9.3.3	 Results	and	Discussion
9.3.3.1	 Forecasting	Outcomes
Errors in predicting �indings are inevitable because of the high degree
of unpredictability in renewable output and energy load, and they must
be taken into account as they affect the reliability evaluation. Thus,
dependability evaluation requires the probabilistic forecasting
framework. Prediction intervals now employ Bayesian, methods like
bootstrapping and mean–variance estimation. Bootstrap is utilized in
this study because it can ef�iciently estimate the prediction variance
without requiring intricate computations.

We have compared the methods’ ef�icacy and accuracy in order to
decide which is best for our task. In this chapter, we use four statistical
criteria to examine the results of several strategies: mean squared error
(MSE), mean absolute error (MAE), root mean squared error (RMSE),
and computing time. Other publications have compared the
effectiveness of various methods (Table 9.2).

Table	9.2  Outcomes of various methods for making predictions

Methods MAE MSE RMSE Time	(s)

ELM 16.4389 378.1296 19.4610 0.3055

LSTM 17.4752 460.5956 21.4615 25.1532

ANN 11.5002 233.6488 15.2856 0.5201

Autoregressive moving average model (AMRA) 45.7174 2672.8956 51.7001 81.7285

Backpropagation neural network (BP) 44.3163 2700.3002 51.9644 2.6521

Table 9.2 demonstrates that while ELM’s accuracy may not always
be the greatest and most effective, it does need the least amount of
calculating time (0.3055 s). Instead, the ANN method produces greater
prediction results. On the �lip side, because the bootstrap method’s
calculation of PIs takes a lengthy time, computation time is an
important factor. The BELM approach is utilized for probabilistic
forecasting, since the PIs using the bootstrap methodology in any case
of the uncertainty linked to the method accuracy. The PIs of renewable
energy generation and energy consumption can be used to evaluate
supply dependability. The selected con�idence level in this instance is
95%. By taking a sample from the connected PIs, which serve as the



simulation model’s inputs, one may determine the point value of every
variable.

9.3.3.2	 Results	of	IES	Dynamic	Performance	Simulation
Since labeled data collection is a realistic challenge and its associated
sample imbalance problems complicate model training, unsupervised
approaches have been developed in several disciplines. For a variety of
tasks, including classi�ication, behavior analysis, machine translation,
etc., convolutional neural networks (CNNs), recurrent neural networks
(RNNs), deep belief networks (DBNs), LSTM, and stacked autoencoder
(SAE) have all been used. The �indings produced by DBN, RNN, and CNN
are compared with SAE in order to show the adaptation of SAE to IES
performance predictions. The physical model of the IES is used to
simulate the creation of 2000 sets of process variables, which are then
utilized as input samples for all models. Comparing the outcomes of
various approaches is provided in Table 9.3.

Table	9.3  Comparison of prediction results of different methods

Methods MAE MRE RMSE

SAE 0.0894 0.3997 0.0046

CNN 9.3002 0.4535 14.4368

RNN 45.4078 1.6002 71.51.2

Table 9.3 demonstrates the effectiveness of SAE in extracting useful
feature representations from IES data. Additionally, SAE uses the least
amount of computational time (Table 9.4; 0.000977% of the time
required for the physical model). Consequently, an SAE model rather
than the conventional physical model is employed to boost computing
ef�iciency.

Table	9.4  Calculation time using different methods

Methods Time	(s)

SAE 2.8640 × 10−5

CNN 3.4145 × 10−4

RNN 9.7560 × 10−5



Methods Time	(s)

Physical model 2.9264

Figure 9.5 and Table 9.5 provide a detailed description of the
stacked autoencoder model’s dependability and accuracy.

Fig.	9.5  Forecasting results of different variables

Table	9.5  Outcomes of the prediction using the stacked autoencoder model

Process	variables MAE MRE RMSE

Delivery pressure 0.0026 0.0052 0.0002

Transmission loss 0.0070 0.0621 0.0007

Consumption of GPG 0.0163 0.0870 0.0015

Consumption of P2G 0.0009 0.0421 0.0010

Figure 9.5 demonstrates how the predicting outcomes may
precisely mirror the system’s dynamic performance. These �indings



point to a fair degree of accuracy in predicting system dynamic
performance.

9.3.3.3	 Results	of	the	Estimate	of	System	Functional	States
The parameters of the GMM-HMM may be calculated from the
functional indicators that have previously been observed. On the basis
of continuous time process, hidden states and related probability
distributions can be generated and used to investigate the way in which
IES operates. Reliability is assessed using estimations of the
probabilities of the states. The probability distributions of every state
at speci�ied periods may be calculated by combining the Order Statics
and Bracketing techniques.

The input for this technique is speci�ied as the variables’ means of
the PIs. The outcomes are displayed in Fig. 9.6a. The likelihood of
failure is expressed as a point value and is, for example, 0.036 at hour 8.
But it is insuf�icient for operators to make sound decisions. Due to the
uncertainty elements that have been taken into account, the hourly
probability distributions of each condition in different groups at hour 6
(as shown in Fig. 9.7) can offer more accurate information.



Fig.	9.6  IES failure likelihood determined via dynamic event tree analysis





Fig.	9.7  Probability distribution functions at hour 6



Additionally, as can be shown in Fig. 9.6a, the typical dependability
evaluation only offers a number that captures the system’s current
condition. The �indings are different as indicated in Fig. 9.6b since the
input is varied, demonstrating that using only a time series data may
not provide very impressive results.

On the other hand, the suggested model allows for the grouping of
variables into groups in order to determine the system’s state,
depending on the priority of experts and operators (as shown in
Fig. 9.7).

The probability distributions for each circumstance at any hour may
be presented, as seen in Fig. 9.8, which can give more detailed and
accurate information. The results are more indicative than those from
other approaches.





Fig.	9.8  Probability distributions for each state, with a 95% con�idence level

Figure 9.8 displays the probability distribution time series for each
system functional state. Group A’s system functionality is mostly
dominated by low-risk and medium-risk states. It suggests that if the
change in gas supply is taken into account simply, the system may be
kept in a reasonably healthy state. The distribution of low-risk
probabilities in Group B varies from 0.98 to 1 during hours 1–4. Other
times, the high risk and moderate risk probability distribution ranges
are nearly identical. The cause is that after hour 6, consumers begin
using natural gas regularly. The transmission loss in Group C, which is
affected by both the customer demand and the delivery pressure, is
associated with power transmission loss and compressor power usage.
Each state’s probability distributions in Group D are comparable. This
suggests that each state has a distinct tendency. In general, stochastic
renewable generation must be modulated by frequent operation of GPG
and P2G. Compared to other groups, the functional states are more
delicate to the equilibrium between renewable energy production and
energy consumption.

Because a set of time series is employed in conventional reliability
evaluation methods, only a single value is supplied (as shown in
Fig. 9.6). Because projected data are chaotic, the dependability
assessment’s conclusion is astounding. Operators are unable to detect



�laws and recognize reliability situations due to PIs’ poor visibility.
Equations (9.10–9.13) illustrate how various indexes are created to
combine and analyze the data in order to address this de�iciency.

9.3.3.4	 The	Supply	Dependability	Assessment’s	Findings
By comparing and analyzing the speci�ic outcomes, the information in
Figs. 9.7 and 9.8 can show how each process variable affects the way
the system works. In this research, two indexes (CDI and EMSG/P) are
presented to give managers quanti�iable results, on the behavior of the
system in place of entirely normal and failure states. Despite the fact
that these indices are point values, uncertainties have been taken into
account in comparison to the outcomes displayed in Fig. 9.6. These
indices can therefore be used as a reference to improve the reliability of
IES.

Based on the information in Figs. 9.7 and 9.8, the results are
analyzed using the security indicator CDI and the adequacy indicator
EMSG/P.
(A)

Adequacy	assessment 
When compared to conventional reliability indices, EMSG and EMSP

take the PIs and the related values of the process variables into account.
Both of them are able to translate the quantity of energy de�iciency into
the risk’s likelihood. Figure 9.9 displays the EMSG/EMSP �indings.



Fig.	9.9  EMSG and EMSP time series for several groupings

Hours 1 through 5 have a relatively low EMSG of the gas source,
whereas hours 9, 10, 19, and 20 provide the greatest risk. The EMSG of
the gas source is impacted by the overall demand, which is the primary
cause. Independent consumers’ sporadic little variations in demand
seldom have a signi�icant impact on overall gas demand. It implies that
the actions of the people have a profound effect on the system
dependability. It should be observed that the EMSG of GPG �luctuates
often, and that daily risk times are more variable than other times. GPG
must react quickly to the stochastic renewable’s outputs, which
frequently cause it to start up and stop down.



The EMSP for transmission loss follows a pattern that is almost
identical to the EMSPs for P2G and GPG. Because of the rise in
renewable energy generation, it has been reported that the danger
hours are more likely to occur around hour 22. The main reasons for
frequent changes in EMSP include the normal operation of P2G and
long-distance transmission in the network.

Additionally, the risk periods, as determined by various indications,
are extremely varied, and the consequences of each EMSG should be
considered by the system’s overall EMSG and EMSP.

Figure 9.10 displays the combined EMSG and EMSP, while Fig. 9.11
displays the average percentages for each component. The percentages
of EMSP (P2G) and EMSP do not �luctuate much over time
(approximately 85% and 15%, respectively), despite variations in the
combined EMSP’s value. The proportions of each speci�ic EMSG,
however, can alter drastically. Additionally, at some hours (almost 0% at
hour 6), the effect of the gas source on the EMGS can be disregarded.



Fig.	9.10  Combined EMSP and EMSG

Fig.	9.11  Combined EMSG/P’s percentages for several indicators

The EMSG/P results can be used as a crucial decision-making
reference, as an adequacy index. Operators are able to determine which
element is most crucial at any given moment, opposed to previous
approaches, which just provide a dependability rating (as shown in
Fig. 9.6). At the same time of day, EMSG and EMSP are at risk when
energy demand rises, as illustrated in Fig. 9.11 and Table 9.6,



respectively. Table 9.6 demonstrates that the energy source has the
greatest impact on the EMSG (as shown in Fig. 9.12). The results
demonstrate how important GPG, P2G, and delivery pressure are to the
daily energy supply.

Table	9.6  Merged EMSG and EMSP’s risk factors

	 Day Risk	time	(hour) Value

EMSG (105 m3/h) 1 8, 11, 12, 22 2.65, 2.45, 2.49, 2.58

2 8, 17, 19, 22 2.70, 2.67, 2.55, 2.79

3 8, 11, 22 2.51, 2.74, 2.73

4 8, 10, 11, 20, 22 2.75, 2.56, 2.63, 2.58, 2.54

EMSP (MW) 1 10, 18, 20 0.088, 0.096, 0.092,

2 9, 19, 20 0.10, 0.10, 0.11,

3 9, 19, 20, 21, 22 0.095, 0.10, 0.10, 0.10, 0.10

4 8, 9, 18, 19, 20, 21 0.10, 0.1, 0.11, 0.11, 0.11, 0.11





Fig.	9.12  RSs of different variables

Additionally, outcoming of forecasting, this graph might offer
operators guidance. For example, as indicated in Table 9.6, the danger
points in the integrated EMSG/P are different every day. This implies
that the operators must make judgments in real time based on the
updated index because of the variable weather and unexpected human
behavior.
(B)

Security	assessment 
In Fig. 9.12, outcomes of the relative score (RS) are shown. The

value of RS re�lects how distant and how close the system is to each of
its functional states at any given time. The evolution of RS through time
corresponds to the evolution of system functioning. RS may be
calculated using the appropriate indicators, and it monitors how the
system’s dependability changes over time.

The patterns of RS demonstrate the identical circumstances when
compared to EMSG/P. For nearly the entire time, when EMSG/P is high



or low, the high or low value of RS corresponds. There are more
plateaus and �lat in the RS of the gas source and delivery pressure.

The CDI may be determined using the formula provided in Fig. 9.13,
according to the RS. This shows that the delivery demand affects
security dependability in a signi�icant way. According to the conversion,
the value of RS (in the danger period) is still very high (0.46–0.49), and
it should be highlighted. Therefore, the dependability of security is not
signi�icantly impacted by the conversions of P2G and GPG.

Fig.	9.13  Results of CDI

As the value of indicators approaches WorstMV, the system’s
functioning deteriorates. When compared to EMSG/P, CDI is an index
that can represent actual system circumstances by determining how far
the system is from its optimal functionality. Table 9.7 displays the risk
periods based on the CDI. The danger times according to the CDI and
EMSG/P have distinct risk points (Tables 9.6 and 9.7). The most risky
time would be when the risk points are the same, like hour 22 on the
third day.



Table	9.7  Risk times according to the CDI

Day Risk	time	(hour) Value	of	CDI

1 9, 10, 18, 19, 20 0.42, 0.40, 0.40, 0.41, 0.40

2 9, 10, 18, 20, 21, 22 0.40, 0.40, 0.40, 0.39, 0.40

3 9, 10, 18–22 0.42, 0.41, 0.39–0.40

4 8, 9, 18, 19, 21, 22 0.39, 0.39, 0.39, 0.39, 0.39, 0.39

9.4	 Conclusions
A brand-new dependability assessment approach for IES is created in
this chapter. The proposed technique combines four steps: data
forecasting, system functional states analysis, reliability evaluation, and
IES dynamic performance simulation. Discussion and analysis follow
the outcomes of the created approach on the test case.

When using the BELM technique, it is possible to quickly and
accurately provide probabilistic forecasting results by estimating the
PIs of demand and renewable energy output. Stack autoencoder models
are utilized to create the dynamic simulation model of IES rather than
conventional physical models since the simulation periods may be quite
lengthy owing to the resampling from the PIs of data. These models can
be good in terms of the demand for accuracy and speed of computation.

Finally, a model for system functional states analysis is proposed to
defeat the restrictions of binary values in the system dependability
evaluations. This model integrates the GMM-HMM methodology with
OS method. Process variables are included in the model to dynamically
evaluate system functioning and to provide a probability distribution
with the appropriate percentile value for each condition. In comparison
to conventional point values, the outcomes are more reliable and
readily available.
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Abstract
Planners may focus on the health of the equipment using the condition-
based maintenance technique and make recommendations based on
the data collected. However, the effectiveness of the fault detection and
diagnosis technique must be established �irst. The safety and
dependability of oil and gas pipeline systems may be considerably
improved by fault detection of pressurization devices. A deep learning-
based fault detection and diagnosis approach is introduced in this
chapter. The diagnostic accuracy for �laws of this technology, which
combines time–frequency domain analysis and visual pattern
recognition algorithms, can be above 95%.
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With the rapid development of the world’s low carbon economy, the
demand for natural gas as an ef�icient fossil energy source is showing a
high growth trend. As the bond between natural gas resources and
downstream markets, the natural gas pipeline system is the main way
to secure the demand of natural gas users. Therefore, the ability of the
natural gas pipeline network (NGPN) system to operate safely and
reliably determines the safety and security of basic energy facilities [1,
2]. In this regard, studies have looked at the effects and likelihoods of
NGPN unit failures on the network’s dependability and safety [3–6].
The following are two types of techniques to assess or enhance the
reliability and security of NGPN system provisioning: (1) analysis of
system-level probabilistic security (PSA) and (2) unit-level prognostic
health management (PHM).

PSA can evaluate the whole range of potential scenario outcomes
and offer recommendations for risk-management tactics [7]. It is a
useful tool for managers to comprehend prospective accidents, their
likelihood, and their effects. A capacity network stochastic model is
created by Su et al. [6] to quantitatively evaluate supply dependability
for NGPN systems. Different customers’ gas shortage risk is examined
from both a global and a personal standpoint.

An effective supply reliability evaluation approach that enables to
investigate the relationships between failure events and shortage
accidents is required for safeguarding the system’s energy supply. A
well-liked probabilistic technique for predicting system dependability
and assisting in decision-making is the Bayesian network (BN) [8, 9].
The application of BNs in assessing the system reliability was
summarized by Adedipe [8]. Song et al. [10] proposed a dependence
limit analysis approach to quantify the reliability of a complex system
using the probabilistic modeling.

Although previous work on optimization of system reliability issues
in pipeline system has progressed, it is still an unresolved topic. First,
the computational workload of current methods for modeling gas
supply reliability in natural gas pipeline networks grows exponentially
with the magnitude of the problem. Second, the same maintenance
intervals are currently used for similar installations in the oil and gas
industry system, although the rate of installation degradation varies
depending on the operating environment. This could result in some



units receiving excessive maintenance, while others receive insuf�icient
maintenance. Third, the actual maintenance of each unit in the NGPN
system is only related to its current operational status without
considering its importance to the system function.

10.2	 Description	of	the	Mathematical	Model
This paper presents a preventive maintenance strategy optimization
method for gas transmission pipeline systems based on gas supply
reliability. The method consists of three parts: a mapping relationship
model between maintenance strategy and unit reliability, a fast
evaluation method of system gas supply reliability based on
maintenance strategy, and a dynamic optimization method of
maintenance strategy based on deep reinforcement learning. This part
gives a description of the optimization of supply reliability for natural
gas pipeline system while also taking into account the components
(units). Figure 10.1 shows a general summary of the established
technique.



Fig.	10.1  Description of the method

10.2.1	 Modeling	the	Pipeline	System
The pipeline system is made up of several units of various sorts that are
linked together by intricate logical linkages. Pipelines, compressors, gas
providers, and CUs are a few of these units. The units modeling will be
described in the paragraphs that follow.

Different operational states of the units are de�ined as a result of
complex operating conditions and outside environmental disturbances.
Figure 10.2 shows the state change mechanism for these units. The



pipelines are classi�ied as being in normal, deteriorated, and
interrupted (failure) states.

Fig.	10.2  Description of the pipeline and compressor units’ state transition procedure

The three states normal, deteriorated, and failure are also speci�ied
for the compressor stations (Fig. 10.2). The term “degenerated
condition” refers to a compressor failure that results in a 20% drop in
the capacity of the associated pipeline. We utilize the Markov stochastic
process to explain the change of the units’ state as it is expected to
adhere to the Markov property.

(10.1)

The above formula can be abbreviated as  , and the
homogeneous Markov process hypothesis becomes:

(10.2)

(10.3)



(10.4)

Figure 10.2 represents the state transition diagram for a pipe of
length L. The transition rate matrix is shown in Eq. (10.3). The
following matrix illustrates the unit state changeover procedure:

(10.5)

Typical sources of gas for NGPN are upstream pipelines, LNG units,
or underground storage facilities. Numerous factors, such as those
related to the economy, the environment, and politics, have an impact
on the stability of gas supplies. We examine the two states of normal
and failure to characterize the gas source in order to keep things simple
without sacri�icing generality.

The customer status is determined by the amount of gas demanded
by the customer in conjunction with the actual amount of gas supplied.
According to the equilibrium between supply and demand, three states
are used to describe the customer state: normal, shortage, and severe
shortage. Normal means that the supply is equal to the customer’s
demand; shortage means that the actual supply can partially meet the
customer’s demand; and severe shortage means that the actual supply
is less than 75% of the demand. In addition, the gas source of a natural
gas pipeline is usually an oil and gas �ield, the end of a long-distance
pipeline or a gas storage reservoir, where the gas source is always in a
normal state without considering the failure of the gas source due to an
unexpected accident. In practice, the determination of the division
threshold or the number of states for the user state needs to be further
analyzed in relation to the speci�ic problem scenario.

10.2.2	 Supply	Capacity	Calculation
10.2.2.1	 State	Transition	Modeling
We developed a graph theory-based capacity network representation
that characterizes the operational state of the system and highlights the



complex topology of the NGPN system. The weights of the edges in the
capacity network represent the pipes’ maximum supply capacity and
depend on their condition.

The values of edge weights are recorded by the matrix Q, while the
distances between linked nodes are recorded using the lengths matrix
L. When a network component malfunctions, the capacity matrix is
altered, and the pipeline’s capacity between nodes i and j is noted as Q
(i, j).

10.2.2.2	 Stochastic	Capacity	Network
To ensure gas supply reliable and improve system ef�icient, the
operator is recommended to deliver the natural gas based on �low
direction while transitioning between unit states. We provide a
shortest-path strategy for the redirection that integrates maximum
�low for a random network model with a priority pattern in order to
reproduce the optimal operating environment for the NGPN system.

In order to maximize the amount of material that may be delivered
between two sources and sinks with a restricted capacity, the optimal
utilization of line capacity is outlined in terms of the maximum �low
problem. In NGPN systems, the maximum �low algorithm can be used to
determine the supply capacity [11–13].

When the state of natural gas pipeline equipment changes, the
distribution of �low in the pipeline needs to be readjusted to maximize
the gas demand of downstream users. Therefore, the maximum �low
algorithm is introduced to calculate the maximum gas supply capacity
of a natural gas pipeline system under different operating conditions
[13]. The maximum �low algorithm transforms the gas pipeline �low
allocation problem into a calculation of the maximum delivery capacity
at two points in the transmission network, where the gas source and
the customer are considered as the source and sink points, respectively.
For natural gas pipeline systems where there are multiple gas sources
or multiple users, the multiple source and multiple sink problem needs
to be transformed into a single source and single sink problem.
Therefore, we build on the original topology by introducing a virtual
source point U and a virtual consumer point V. The virtual source point
is connected to all sources and supplies gas to all sources. The virtual



gas consumption point is connected to all users, and the weight of the
connected edge is the gas demand of the user.

10.2.3	 Probabilistic	Model	for	Pipeline	System
The analysis of gas supply reliability of pipeline systems using Bayesian
networks involves four key steps: (1) combining expert experience with
pipeline operational data to determine the Bayesian network variable
nodes as well as the network structure. (2) Combining the unit life
distribution model to calculate the unit instantaneous failure
probability as input to the Bayesian network node edge distribution.
(3) Combine the maximum �low algorithm with Monte Carlo to simulate
the user gas shortage state under different unit failures, and use
parameter learning to determine the Bayesian network node
conditional probability distribution. (4) Using Bayesian inference to
calculate the probability distribution of user nodes, and establish the
evaluation of gas supply reliability of the pipeline system.

System reliability evaluation has involved a number of conventional
reliability models. However, the potential for their implementation for
NGPN system stability is limited by the numerous NGPN units, each of
which has several states and is interconnected via complicated network
topologies. The Bayesian theorem summarizes the probability
relationship between unit failures and gas shortages as follows:

(10.6)

where variable x indicates a failure event of component and variable y
indicates the event of gas shortage.

10.2.3.1	 Variables	De�inition
The domain values are shown as nodes, while the network graph’s
dependencies are encoded. The BN’s structure explains the causal
connections between nodes and incorporates the system’s inherent
dynamics.

Two Bayesian models for a simple pipeline system are depicted in
Fig. 10.3. The input of the root leaf is the marginal probability of
pipeline failure. The leaf node indicates the supply capacity of
components (pipeline and compressor). The failure of the pipeline is



indicated by node P, and the failure of the pressure station is indicated
by node C. The gas shortage situations of the CUs are represented by
the CU node. Figure 10.3a illustrates the scenario in which the linked
pipes degenerate as a result of the compressor station failing. Gas
shortages for the downstream CUs are caused by a reduction in supply
capacity.

Fig.	10.3  Bayesian network for a simple pipeline system

10.2.3.2	 Marginal	Probability	Distribution
Random failures of key units (compressors and pipe sections) within a
natural gas pipeline system can lead to gas shortages for downstream
customers, and the use of Bayesian networks can describe the causal
relationships between variables. Bayesian networks are typically
directed acyclic graphs, consisting mainly of nodes and directed edges.
The nodes represent the random variables, the directed edges
represent the interrelationships between the nodes, and the strength of
the interaction between the two variables is expressed as a conditional
probability. The structure of Bayesian networks intuitively re�lects the
causal logic between variables and can clearly describe the propagation
of unitary uncertainty in a pipeline system. This section estimates the
parameters of the BN model by Bayesian estimation:

(10.7)



For pipeline systems, the conditional probability distribution re�lects
the mapping relationship between an upstream pipeline or pressure
station being in an abnormal operating condition and a downstream
customer gas shortage event. Obtaining the conditional probability
distribution based on the data is the key to constructing a Bayesian
network. To this end, a maximum �low algorithm combined with Monte
Carlo simulation is used to generate operational data for the pipeline
system, which describes the state of gas supply to users at each node
when different units fail. Based on this data, maximum likelihood
estimation is used for Bayesian network parameter learning to
calculate the conditional probability distribution between unit nodes
and user nodes.

10.2.3.3	 Index	of	System	Supply	Reliability
The probability of gas shortage can be calculated based on the
probability of failure of the unit. When new supporting data become
available, the powerful method of Bayesian inference may be used to
evaluate the likelihood of an occurrence. The likelihood of a gas
shortage at the CU at time t may be estimated using an approximation
of the belief propagation technique. The indexes of system supply
reliability are described as follows:

(10.8)

(10.9)

where  indicates the individual customers’ reliability of gas
supply.  indicates the system reliability of gas supply. Pi,t is the
probability of gas shortage event happening.

Indexes of adequacy are given as:

(10.10)

(10.11)



where  denotes the amount of natural gas unsupplied by gas
source from the customer perspective.  denotes the amount of
natural gas unsupplied by gas source from the system perspective. Di,t
and Si,t denote the natural gas supplied and demanded to CU i at
discrete time t.

10.3	 Maintenance	Optimization	Based	on	RL
In this work, the Markov decision process (MDP) is adopted here to
represent the dynamic maintenance optimization issue, and the
sequential decision problem is solved by reinforcement learning (RL).

The architecture for preventative maintenance for the NGPN system
is shown in Fig. 10.4, which combines the capability of BNs for causal
inference with intelligent online learning process.

Fig.	10.4  Interaction between reinforcement learning and pipeline system

10.3.1	 Modeling	the	Maintenance	Optimization	Problem
The NGPN system serves as the agents’ environment in this part. The
maintenance strategy is developed by the strong learning ability of
agents. Addressing this �inite MDP means searching a policy to achieve
large returns in the long term; let  denote the state-value
function:

(10.12)



The above equation can be decomposed into the Bellman equation
[13]:

(10.13)

The major goal of this part is to optimize the maintenance interval
in order to lower maintenance costs. Thus, the maintenance expense is
represented by an aggregate sum. Immediate rewards are de�ined by
losses consisting of gas shortage costs and maintenance costs, as
de�ined below:

(10.14)

where  denotes the cost of each maintenance action. It is inevitable
that equipment in pipeline systems will deteriorate in performance and
break down during service. The maintenance management for
equipment depends on the type of failure and failure mode of the
equipment. In the case of pipe sections, for example, the causes of
failure include material failure, third-party damage, corrosion
perforation and personnel mishandling, which ultimately leads to
incidents such as leaks, perforations and fractures in the pipeline. In
order to reduce the risk of corrosion failure of pipe sections,
maintenance can be adopted, including regular internal testing and
defect repairing. Environmental monitoring around the pipeline should
be enhanced for third-party damage and human malfunction.
Regulations should be publicized to improve the skills of operators. As
we can see, equipment failures may be caused by a variety of factors,
and speci�ic maintenances need to be further developed in conjunction
with speci�ic fault information for a particular fault type.

In practice, equipment is in a dynamic, complex interaction
environment with multiple risks overlapping during operation, making
it dif�icult to use a particular or several failure modes to describe the
failures that can occur during the equipment’s life cycle. For this reason,



the maintenance proposed in this paper is not a speci�ic maintenance
action for a particular type of failure, but represents a series of
restorative actions to restore equipment from an abnormal state to its
original state. The maintenance costs incurred are comprehensive,
representing the cost of equipment, manpower, time, and technology
resulting from the maintenance activity. Based on this, this paper
focuses on improving pipeline system reliability by optimizing the
maintenance time point of equipment.

10.3.2	 DRL-Based	Maintenance	Management	Framework
10.3.2.1	 Integrating	RL	with	Maintenance
A machine learning method called reinforcement learning (RL) can
effectively address issues with sequential decision-making [14]. The
widely used RL algorithm is Q-learning (QL). The action and state
spaces are represented by rows and columns in a table, which is how
the standard QL works. The values of the related pairs of state–action
values are stored in the cells of the following table:

(10.16)

where  represents the learning rate, which determines the iteration
process of the algorithm.

10.3.2.2	 Maintenance	Optimization	Based	on	DRL
To overcome the above problems, we propose a DRL-based
maintenance planning strategy for NGPN systems under random
failures. Two neural networks are constructed, each with the same
structure but different parameters, to lessen the instability brought on
by the correlation of data collected at various periods. Updated policies
are intended to reduce function loss, which is expressed as follows:

(10.17)

 and  are parameters for two neural networks sharing the same
parameters. The parameters are updated for �ixed episodes.



A collection of training data may be used to compute the function
loss. The training dataset is chosen as a sample from a buffer known as
experience replay. The main targets of empirical replay techniques are
data correlation problems and non-smooth distribution of empirical
data [15]. Figure 10.5 depicts the policy’s neural network structure.

Fig.	10.5  Neural network structure

10.4	 Validation	for	the	Proposed	Method
10.4.1	 Parameters	for	Pipeline	System
This section conducts numerical tests to evaluate the effectiveness of
the proposed technique leveraging the data in references [16]. The
topology of the tested natural gas pipeline system is shown in Fig. 10.6.



The NGPN is 692.8 km long in its whole. In the NGPN under test, there
are 2 gas compressor stations, 2 gas suppliers, and 8 end consumers.
The maximum operation pressure of the pipeline is 10 MPa; it has an
outside diameter of 1067 mm and a wall thickness of 12.5 mm. The
pipe segment’s average failure rate is calculated at  per
kilometer-year.

Fig.	10.6  Topology structure of the pipeline system

The NGPN systems’ most common maintenance technique in use
today is planned maintenance. This article merely introduces the
random maintenance method as a hypothetical situation that
represents the worst-case scenario of absence experience and



accompanying management strategies. Simply said, various
maintenance techniques are measured against the random
maintenance plan.

Preventive maintenance strategy: carry out repair tasks on all units
while taking into consideration the expense of a gas shortage and the
cost of maintenance in the pipeline system. Use information about
CU’s natural gas shortage potential and system maintenance costs
when making decisions.
Scheduled maintenance strategy: use regular maintenance intervals
to maintain the piping and compressor until the end of the
maintenance period, then make the necessary repairs. The predicted
system’s health status is used to estimate the inspection interval.
Knowledge-based maintenance strategy: carry out the necessary
maintenance on the important units. In the network shown along
Fig. 10.6, the important units are those that are in the main path of
the network or are close to the gas source, such as pipe segments 1–
3, 3–5, and 2–12.
Random maintenance strategy: randomly carry out maintenance
action on gas compressors and pipelines. If a device malfunctions
while it is in use, it will be repaired and returned to its original
condition.

10.4.2	 Results	Analysis
10.4.2.1	 Comparison	of	Gas	Supply	Reliability
Figure 10.7 displays the outcomes of the 48-month study for CUs under
different maintenance strategies. The empirical probability distribution
functions for the reliability of the CU gas supply under various technical
conditions are shown by bar histograms, and the empirical cumulative
distribution functions are indicated by red lines. The comparison of the
�indings shows that both random and preventative maintenance are
helpful in ensuring operation safety and system ef�iciency. Besides, the
ef�icacy of the maintenance strategy depends on both the estimated
cost of a gas shortage and the cost of upkeep. The former is calculated
by multiplying the likelihood of a gas shortage by its impact. So it
should come as no surprise that random maintenance might also result
in a highly reliable system. Good system costs can nevertheless be a



result of severe effects but high dependability. In Sect. 10.4.2.2, several
maintenance techniques’ costs related to gas shortages are compared.

Fig.	10.7  Distribution of gas supply reliability

The analysis of system-level gas supply reliability for various
maintenance methods is shown in Fig. 10.8, where the average value of
CU gas supply reliability at each time point is the system gas supply
reliability. The density function represented in Fig. 10.9 further
indicates that the methods such as preventive maintenance methods
and the stochastic maintenance methods achieve higher supply
reliability.



Fig.	10.8  Comparison of system supply reliability

Fig.	10.9  Probability density functions for the system’s gas supply reliability



10.4.2.2	 Cumulative	Gas	Shortage
Figure 10.10 shows the outcomes of the suggested maintenance
method. System performance is de�ined in terms of the likelihood of
shortage occurrences occurring by gas supply reliability.
Equations (10.8)–(10.11) are used to calculate the amount of natural
gas shortage.

Fig.	10.10  Cumulative gas shortage

10.5	 Conclusion
This chapter develops a unique system management framework for
natural gas pipeline network (NGPN) systems that combines reliability
optimization and preventive maintenance for pipeline system. Instead
of considering the operating conditions and health of the units,
maintenance plans are created with reference to data on the likelihood
of a gas shortage and the expense of system upkeep. A Bayesian
network (BN)-based gas supply reliability assessment model
represents the relationship between unit failure and CU gas shortage.



Besides, a stochastic model network modeling is developed to generate
data for maintenance management. The DRL-based maintenance
strategy can guarantee system reliability and reduce maintenance cost.
The proposed method can provide insight into intelligent management
for energy system.
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Abstract
In recent years, due to the internal and external factors, pipeline
leakage accidents happen frequently which lead to hidden danger to
the safe operation of the pipeline. The pipeline leakage accidents not
only cause serious economic loss, but also harm the safe operation of
pipeline and personal safety. Consequently, it is extremely signi�icant to
detect and locate the leakage of the pipeline in time. Existing methods
of detecting and locating pipeline leakage can be divided into two types,
external and internal monitoring. This chapter summarizes the
common methods for pipeline leak detection and location, including
acoustic methods, negative pressure waves, intelligent algorithm-based
methods, and data-driven methods. The applications of different
methods are also given to compare their strengths and weaknesses.
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11.1	 Pipeline	Leakage	Detection
Transporting hazardous chemicals is an extremely signi�icant project,
and pipeline transportation is the most common mode of
transportation at present. Compared with other ways of transportation,
pipelines are provided with many advantages. For example, it has
higher transportation ef�iciency, and cost lower energy consumption,
multiple products can be transported continuously [1]. But in recent
years, due to the internal and external factors, pipeline leakage
accidents happen frequently which lead to hidden danger to the safe
operation of the pipeline. The pipeline leakage accidents not only cause
serious economic loss [2], but also harm the safe operation of pipeline
and personal safety.

At present, the methods of pipeline leakage detection and
localization can be mainly divided into four types, negative pressure
wave (NPW), transient inverse analysis (ITA), intelligent algorithms-
based method, and data-driven methods. Despite some drawbacks, the
above-mentioned methods have been widely used. When the pipeline
leakage happens, these leakage detection methods attempt to
determine the pipeline operation status based on hydrothermal
process in the pipeline. For the study of pipeline operation condition,
one of the important parts is the hydraulic calculation [3], but
nonlinearity brings dif�iculties to hydraulic calculation [4].

For NPW, the calculated accuracy and sensitivity are higher and the
lost is lower, and it has been involved in many practical projects [5].
During pipeline leakage, the relevant gradient and time information are
collected by pressure signal collectors at both ends of the pipeline. The
leak location can be determined by using signal processing methods.
Despite the popularity of NPW in detecting pipeline leakage incidents,
there are still some technical problems in the meantime. Initially, due to
the transient disturbances in the system, there may generate false
alarms results from similar negative pressure waves. Secondly, the
method is insensitive in some leak scenarios, such as small leaks in
pipelines. Some researchers have made progress in the improved NPW
for pipeline leak detection and localization. Lu et al. [6] denoised the
pipeline pressure signal by developing a small noise reduction method
based on empirical mode decomposition. The proposed method is



combined with NPW to detect pipeline leakage. Li et al. [7] simpli�ied
the methods of accurately determining NPW velocity transit time and
interference based on liquid �low velocity attenuated by NPW.

ITA is proposed by Pudar and Liggett [8], and many researchers
propose the combination of ITA and other algorithms to expand
applicability of ITA. Vıt́kovský et al. [9] proposed that the uniqueness
and quality of ITA solutions can be improved by the rapid input
transients including maximum system response information through
experimental observations. However, many restrictive conditions are
required before using this method, such as �luctuations in leakage �low
rate or arti�icial changes in valve operating conditions.

With the development of computing power and data storage
capacity, the intelligent algorithms and data-driven methods are
utilized for pipeline leakage detection. Zhang et al. [10] proposed a
novel method for leak detection and localization in liquid pipelines by
combining inverse hydrothermal transient analysis and improved
particle swarm optimization (PSO). Huang et al. [11] developed a
numerical method based on a combination of transient �low simulation
and simulated annealing to detect leakage in pipeline networks. The
intelligent algorithm and machine learning also provide contributions
to many industries. Li et al. [12] proposed a leakage detection method
by detecting transient in the pipeline, based on the nonlinear time
series. Kang et al. [13] developed a novel model for leakage detection
by combining a 1-D convolutional neural network with a support vector
regression, then the leakage location is determined by applying
localization algorithm based on graph theory. Fukuda and Mitsuoka
developed a hybrid method for detecting smaller-scale leaks in
pipeline; the statistical analysis technology and pressure gradient
method were employed.

In recent years, there exist some studies for pipeline leakage. Liu et
al. [14] proposed a comprehensive model, which contains a large
leakage dynamic monitoring module and a small leakage static testing
module. Xu et al. [15] analyzed the special characteristics near the leak
source for small leaks; the �luid dynamic and aeroacoustics
mathematical model were used. Liu et al. [16] expressed the original
pressure data applying Markov chain by extracting the dynamic
characteristics of the original pressure data and utilized switching rules



to select different time scale models to accurately recognized pipeline
states.

Although there is great progress made in the above-mentioned
methods, the limitations can be summarized as follows:
(1)

The existing methods are limited to determining only one possible
combination of leakage parameters. In theory, upstream and
downstream leaks and pressure combinations can also make the
two measured parameters different. Therefore, a leakage accident
may have different combinations of leakage parameters.

 

(2)
Owing to the complexity of pipeline leaks, the present methods
for leak detection commonly used are based on many
assumptions; that is, the magnitude of the NPW propagation
velocity is constant and so forth. However, due to complex
physical mechanisms, these assumptions may against the actual
operating conditions sometimes, which reduce the accuracy of
leak detection consequently.

 

In recent years, a novel generative model, named generative
adversarial networks (GANs), has been proposed [17]. From the point
of view of �itting probability distributions, it can overcome both of
these limitations. GANs aim to generate similar data to input data. Due
to their excellent modeling abilities, GANs can adapt to complex data
even with some implicit distributions and the data do not need to
conform any speci�ic assumptions. There has been a successful
application for GAN in many frontier research areas, such as image
processing [18] and natural language processing [19]. For this reason,
this chapter proposes a GANs framework to detect pipeline leakage
based on data-driven. As shown in Fig. 11.1, considering that the on-
site leakage accidents barely happen and the statistical data of on-site
pipeline leakage are lacked, the experimental simulation is carried out
to generate leakage data. The measured data in SCADA system and the
simulated data are input to the GANs framework, then the
combinations of pipeline leakage parameters are generated. The
generated data are applied to determine the leakage condition,
providing a decision basis for on-site emergency repair.



Fig.	11.1  Main process of the pipeline leakage detection method in this chapter

11.2	 Intelligent	Algorithm	for	Pipeline
Leakage	Detection
11.2.1	 Description	of	the	Generative	Adversarial	Networks
The GAN, which is proposed in 2014 [17], is an essentially generative
framework. In general, GAN is applied to approximate the data
distribution of the training set and then generate similar results with
the same distribution. The traditional GAN includes two modules, a
generator that matches the potential distribution in the training data
and a discriminator that designed to distinguish the original training
set samples from the synthetic ones.

The basic framework of GAN is depicted in Fig. 11.2. For GAN, two
different neural networks try to against each other until the
convergence condition is satis�ied. The operation principle of GAN is
that two neural networks are applied to play against each other when
the Nash equilibrium is reached. More speci�ically, the GAN framework
is composed of two functional parts, namely the generative (G) network
and a discriminative (D) network. The G network is designed to
approximate the distribution of the sample data and generates samples
that are similar to the real training data, where the noise z follows a
distribution (uniform, Gaussian, etc.). The G network aims to map the
noise z to data space as G (z, θG), where θG consists of the parameters
for the G network, and G(•) is a multilayer neural network. For the (D)



network, it is a two-class classi�ier employed to estimate the probability
that a sample is derived from the trained data rather than the
generated data. The D network will output a large probability when the
sample is from real training data. If the sample is not from real training
data, the D network obtains a small value. The D network mainly
intends to maximize the classi�ication accuracy, and the G network aims
to maximize the probability that the data generated by the D network
will be regarded as the real data.

Fig.	11.2  Basic framework of the GAN

11.2.2	 The	Variants	GANs
As research continues, GANs have also shown their shortcomings, such
as model collapse and imbalanced training between generator and
discriminator [20]. In recent years, great efforts have been made to
improve the performance of GANs through various changes to standard
GANs. In this chapter, according to different optimization methods,
various GANs are divided into two categories, called structure-focusing
and loss-focusing improvements, as shown in Fig. 11.3.



Fig.	11.3  Variants GANs

11.3	 The	Proposed	GANs	Intelligent
Framework	for	Leakage	Detection
The detection method of pipeline leakages based on GANs is developed
in this section, as shown in Fig. 11.4.



Fig.	11.4  Proposed detection method of pipeline leakage

The simulation method is applied to generate leakage data, and
sample 1 is collected from simulated data. For G network, the inputs
conform to speci�ic distribution, and the generated data contain three
leakage parameters, namely leakage time, coef�icient, and location.
Sample 2 contains measured data and the generated data. Measured
data are collected employing the �low rate meters and pressure meters.
The complete leak data are the combination of generated data and
measured data and can be represented as  . Therefore,
the GANs framework can be used to approximate the distribution of
leakage data, regardless of whether the leakage data conform to the
Gaussian distribution. The inputs of D network are two different
samples, A and B. The D network outputs a probability value used to
distinguish A from B.

The G and D networks update the network parameters with the help
of the loss function. Training a GANs framework is closely related to the
goals of the G and D networks as well as the loss function. For the GANs
framework, the goal of the G network is to generate data as a
generation sample in combination with the measured data to statisfy
the distribution of pipeline leakage simulation data as much as
possible. For the D network, the goal is to clearly distinguish between
simulated and generated data, thereby maximizing the difference
between  and  .



11.4	 Pipeline	Leakage	Experiments
11.4.1	 Leakage	Data	Description
The experimental data are from a previous work [10]. Extensive
pipeline leak data were obtained using relevant mathematical analysis.
To illustrate the generality of the GAN framework for liquid pipelines,
this section uses a hydraulic head to characterize the liquid pressure, as
shown in Eq. (11.1).

(11.1)

where H denotes the hydraulic head, P is the pipeline pressure,  is the
liquid density, and  represents gravity acceleration.

The pipeline upstream head, down �low rate leakage time,
coef�icient, and location are initialized after obtaining operation
parameters. After transient process analysis, the corresponding
downstream head and upstream �low can be obtained.

It is signi�icant to conduct data normalization, which can improve
model accuracy and generlization ability by accelerating the
convergence speed. In this chapter, the min–max method is applied to
normalize each dimension of the datasets to values within the range of
[0, 1] as follows:

(11.2)

where  is the normalized values of datasets and  is the original
value. The  and  are the minimum value and maximum value
of the datasets, respectively. After the data are normalized, the input
data can be obtained.

11.4.2	 Evaluation	Metrics
The proposed model can generate various prediction results of pipeline
leakage. Consequently, it is not appropriate to directly compare the
prediction results of pipeline leakage with the real parameters. A
precise detection model of pipeline leakage should be able to generate
leakage data, which contains similar properties to the simulated data.



 ,  ,  , and  are utilized to represent the upstream
�low, downstream �low, upstream head, and downstream head. Then,
the new upstream �low and downstream head can be acquired through
taking the three leakage parameters,  and  as the input of
transient analysis process. Therefore, an error function is introduced to
represent the performance of the proposed method for pipeline leakage
modeling, as shown in Eq. (11.3).

(11.3)

where  and  are new upstream �low and downstream head
obtained by transient analysis process.

11.4.3	 Pipeline	Leakage	Cases
For the performance validation of the proposed pipeline leakage
modeling method, the training principle of the GAN framework should
�irst be determined. Through trial and error, the appropriate training
algorithm was determined to be RMSprop, an adaptive learning rate
method that overcomes the reduced learning rate problem.

After acquiring the GANs framework, two real-world pipeline
leakages are taken as examples to verify the ef�iciency of the
framework. The measurement data of the two examples are shown in
Figs. 11.5 and 11.6. The actual leakage parameters are shown in Table
11.1. The measurement data are used as input, and the output is the
generated (predicted) leakage parameters. After training, estimates of
pipeline leakage parameters are obtained. To explain the accuracy and
ef�iciency of the proposed method, 200 sets of generated parameters
are randomly selected to form a set, and the error probability
distributions are calculated.



Fig.	11.5  Measured data of sample 1 (a head and b �low rate)



Fig.	11.6  Measured data of sample 2 (a head and b �low rate)

Table	11.1  Comparisons of different methods on pipeline leakage parameters estimation

	 Leakage	location
(m)

Leakage
coef�icient

Leakage	time
(s)

Error
(%)

Real Example
1

2082.4 0.00320 141.4 /



	 Leakage	location
(m)

Leakage
coef�icient

Leakage	time
(s)

Error
(%)

Example
2

5934.6 0.00212 155.8 /

Improved PSO Example
1

2105.4 0.00327 138.9 4.8

Example
2

5874.5 0.00205 153.6 4.6

ANN Example
1

1964.3 0.00301 124.7 8.5

Example
2

5788.9 0.00233 149.2 7.3

The GANs
framework

Example
1

2100.0 0.00314 142.5 3.9

Example
2

6000.0 0.00216 156.6 3.5

It is demonstrated in example 1 and example 2 that, given
measurement data, it is possible to estimate pipeline leak parameters
using a trained GAN framework. Figure 11.6a shows that the
downstream head drops sharply after 170 s, while the upstream head is
faster than 170 s, indicating that the leakage time is less than 150 s and
the leakage location is closer to the upstream, based on the negative
pressure wave propagation. These similar results can be obtained in
Figs. 11.5 and 11.6.

The effectiveness of this method is veri�ied by taking the improved
PSO [10] proposed in previous work and arti�icial neural network as
comparisons. The leakage parameters for sample 1 and 2 are estimated
by the improved PSO method and arti�icial neural network. A
comparison of various methods of estimating pipeline leak parameters
is presented in Table 11.1. Similarly, the highest probability values of
the leak parameters generated by the GAN framework are also shown
in Table 11.1. As shown in Table 11.1, the leakage locations of the
improved PSO (2105.4 m) and the GANs framework (2100.0 m) are
close to the actual location (2082.4 m). Furthermore, for example 1 or
example 2, the leakage parameter prediction result of the GAN model is
the best followed by the improved PSO, while the leakage parameter
prediction result of the ANN is the worst. The errors described in



Sect. 11.4.2 for these three models are calculated and depicted in Table
11.1 to further demonstrate the accuracy of the GANs model. For
example 1, the estimated errors of the ANN improved PSO, and GANs
frameworks are 8.4%, 4.8%, and 3.9%, respectively. For example 2, the
errors are 4.6% (improved PSO), 7.3% (ANN), and 3.5% (GANs
frameworks), respectively. By comparing the errors shown in Table
11.1, the ef�iciency of the GANs framework proposed in this work is
veri�ied.

11.5	 Experimental	Conclusion	of	Pipeline
Leakage	Detection
This chapter proposes a novel method based on GANs framework to
estimate the leakage parameters accurately. The GAN is a generative
framework and is made up with two modules (a generator and a
discriminator). Typically, a GAN is applied to approximate the
distribution of the data in the training set and then produce similar
results with the same distribution. In this chapter, after obtaining the
on-site �low rate and pressure of upstream and downstream measured
data, the GANs framework is used to generate the potential leakage
parameters combination, which contains coef�icient leakage, time, and
location. Two real-world pipeline leakages are applied to verify the
accuracy and ef�iciency of the proposed framework. Results suggest
that the proposed GANs framework outperforms in pipeline leakage
parameters estimation and has a potential application value to guide
on-site operation management.
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9. Vıt́kovský JP, Lambert MF, Simpson AR, Liggett JA. Experimental observation and analysis of
inverse transients for pipeline leak detection. Journal of Water Resources Planning and
Management. 2007;133:519–30. https:// doi. org/ 10. 1061/ (ASCE)0733-9496(2007)133: 
6(519).

10. Zhang H, Liang Y, Zhang W, Xu N, Guo Z, Wu G. Improved PSO-based method for leak detection
and localization in liquid pipelines. IEEE Transactions on Industrial Informatics.
2018;14:3143–54. https:// doi. org/ 10. 1109/ TII. 2018. 2794987.

11. Huang Y-C, Lin C-C, Yeh H-D. An optimization approach to leak detection in pipe networks
using simulated annealing. Water Resources Management. 2015;29:4185–201. https:// doi. 
org/ 10. 1007/ s11269-015-1053-4.

12. Li J, Liu W, Sun Z, Cui L. A new failure detection method and its application in leak monitor of
pipeline. 2008 10th International Conference on Control, Automation, Robotics and Vision:
IEEE; 2008. p. 1178–82. https:// doi. org/ 10. 1109/ ICARCV. 2008. 4795688.

13. Kang J, Park Y-J, Lee J, Wang S-H, Eom D-S. Novel leakage detection by ensemble CNN-SVM and
graph-based localization in water distribution systems. IEEE Transactions on Industrial
Electronics. 2017;65:4279–89. https:// doi. org/ 10. 1109/ TIE. 2017. 2764861.

14. Liu C, Li Y, Xu M. An integrated detection and location model for leakages in liquid pipelines.
Journal of Petroleum Science and Engineering. 2019;175:852–67. https:// doi. org/ 10. 1016/ j. 
petrol. 2018. 12. 078.

15. Xu T, Chen S, Guo S, Huang X, Li J, Zeng Z. A small leakage detection approach for oil pipeline
using an inner spherical ball. Process Safety and Environmental Protection. 2019;124:279–89.
https:// doi. org/ 10. 1016/ j. psep. 2018. 11. 009.

16. Liu J, Zang D, Liu C, Ma Y, Fu M. A leak detection method for oil pipeline based on markov
feature and two-stage decision scheme. Measurement. 2019;138:433–45. https:// doi. org/ 10. 
1016/ j. measurement. 2019. 01. 029.

17.

https://doi.org/10.1016/j.energy.2014.01.028
https://doi.org/10.1109/APPEEC.2011.5748950
https://doi.org/10.1016/j.psep.2016.08.014
https://doi.org/10.1016/j.psep.2019.01.010
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1031)
https://doi.org/10.1061/(ASCE)0733-9496(2007)133:6(519
https://doi.org/10.1109/TII.2018.2794987
https://doi.org/10.1007/s11269-015-1053-4
https://doi.org/10.1109/ICARCV.2008.4795688
https://doi.org/10.1109/TIE.2017.2764861
https://doi.org/10.1016/j.petrol.2018.12.078
https://doi.org/10.1016/j.psep.2018.11.009
https://doi.org/10.1016/j.measurement.2019.01.029


Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative
adversarial nets. Advances in neural information processing systems. 2014;27.

18. Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. Advances in
neural information processing systems. 2016;29.

19. Yu L, Zhang W, Wang J, Yu Y. Seqgan: Sequence generative adversarial nets with policy
gradient. Proceedings of the AAAI conference on arti�icial intelligence 2017. https:// doi. org/ 
10. 1609/ aaai. v31i1. 10804.

20. Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S. Least squares generative adversarial
networks. Proceedings of the IEEE international conference on computer vision2017. p.
2794–802. https:// doi. org/ 10. 48550/ arXiv. 1611. 04076

https://doi.org/10.1609/aaai.v31i1.10804
https://doi.org/10.48550/arXiv.1611.04076


(1)

 

 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Su et al. (eds.), Advanced	Intelligent	Pipeline	Management	Technology
https://doi.org/10.1007/978-981-19-9899-7_12

12.	Smart	Emergency	Management	of
Pipeline	System
Weilong Ni1   and Zhengbing Li1  

Beijing Key Laboratory of Urban Oil and Gas Distribution
Technology, China University of Petroleum, Fuxue Road No.18,
Changping, Beijing, 102249, China

 
Weilong	Ni	(Corresponding	author)
Email:	nwl_1997@163.com

Zhengbing	Li
Email:	cup_lzb@163.com

Abstract
Oil and gas resources are important strategic materials to ensure
national economic, political, and military security. In emergency
management, the supply of oil and gas can maintain the normal
operation of various vehicles. When disasters cause supply disruptions,
policymakers need to formulate emergency supply plans based on
factors such as traf�ic impacts and resource demands caused by
disasters, and deliver supply resources safely to disaster-stricken areas
for replenishment within a speci�ied time. This chapter summarizes the
contents of emergency planning, such as site selection, resource
allocation, and transportation mode, puts forward the mathematical
model of related problems, and illustrates with two cases.

12.1	 Emergency	Management
The petrochemical industry occupies an important position in the
national economy of various countries and is the basic industry and
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pillar industry of many countries [1]. Ensuring the safety and stability of
the supply chain of petrochemical products is not only related to the
development of a country’s transportation industry, but also of great
signi�icance to the security of the country. In the past few years, various
disasters have occurred frequently. These disasters cause heavy
casualties and economic losses, threatening the development of the
country and society [2]. After a disaster occurs, various emergency
materials are needed to ensure the rescue work in the disaster area.
Among them, oil and natural gas provide energy for various rescue
transportation equipment and are one of the important materials to
ensure the success of the rescue. Therefore, it is necessary to ensure the
safety and stability of the supply of petroleum products and natural gas
in order to ensure the effective distribution of disaster relief and
emergency supplies.

For petroleum products, the emergency dispatch work is time-
critical, and the demand in the supply process is uncertain [3]. Unlike
other emergency supplies, petroleum products have many different
modes of transportation, and pipelines are the most commonly used one
[4]. At the same time, considering the volatility and �lammability of
petroleum products, stricter requirements for transportation carriers
and storage facilities are required. In the rescue process, unlike other
emergency supplies that can be stored in temporary warehouses,
petroleum products can only be stored in existing oil depots near the
disaster area. Therefore, it is necessary for decision makers to formulate
an emergency dispatch plan for petroleum products according to the
particularity of petroleum products and select different transportation
modes to ensure the safety of the disaster relief process.

12.2	 Emergency	Scheduling
When disasters cause supply interruptions, decision makers are
required to formulate emergency product supply plans according to the
damage caused by disasters, and deliver supply resources safely to
disaster-stricken areas within a speci�ied time for supplementation. This
chapter introduces the emergency dispatch system of petroleum
products, including the transportation plan of emergency products and
the repair plan of damaged roads.



This chapter is based on the analysis of the oil downstream supply
chain system in Fig. 12.1. The emergency dispatch system consists of the
re�ineries, the supply depots, the disaster-stricken cities, and the means
of transportation connecting the above elements. Re�ineries and supply
depots can transport oil to disaster-stricken cities by means of
transportation such as pipelines, rail, and road [5, 6]. However, due to
the damage to various infrastructures caused by disasters, the road for
transporting emergency products may be hindered, resulting in the
inability of emergency products to be transported to the disaster area in
time. Therefore, choosing a suitable mode of transportation becomes a
challenge. When developing a transportation plan for petroleum
products, it is necessary to identify the amount of transportation by
different modes of transportation from re�ineries or supply depots to
downstream affected cities. Generally speaking, it is easier to choose a
shipping origin. However, the occurrence of accidents such as pipeline
rupture will prolong the transportation time or make it impossible to
transport. Therefore, these accidents caused the dif�iculty of emergency
dispatch. Therefore, these accidents are a major challenge for the
emergency dispatch of petroleum products. This chapter considers the
possibility of transport mode failure due to accidental damage and the
resilience of post-disaster repairs, improving the �idelity of the model.



Fig.	12.1  Downstream oil supply chain system

For the application of natural gas supply chain, there are mainly
differences in the mode of transportation, but the general modeling and
solving ideas are the same.

12.3	 Mathematical	Method
12.3.1	 Mathematical	Model
In the emergency dispatch model established in this chapter, the
uncertainty of the disaster area’s demand for materials is considered.
Since disasters may cause damage to roads and railways and rupture of
pipelines, the model also takes into account the possibility that the
mode of transportation may become unavailable, creating a multi-
objective MILP model.

The mathematical model in this chapter includes the following �ive
sets: the set of re�inery and supply depot (  ); the set of disaster node
numbers (  ); the set of transportation modes (  ), where



1 represents pipeline transportation, 2 represents highway
transportation, 3 represents railway transportation; the set of oil
products (  ), where 1 denotes gasoline, 2 denotes diesel; the
set of scheduling cycle (  ), representing the number of days contained
in one cycle.

The objective functions of the model are the minimum total cost ( 
) and total time (  ).

 is the variable representing the volume of transport by mode
 from node  to node  in day  , and the parameter  represents

the delivery �low rate of oil at disaster node  . Thus, 
expresses the transportation time through pipeline. The binary variable

 indicates the choice of transportation modes, equaling to 0 if
the mode  is not imposed.  and  are parameters indicating
the corrected. The binary variable  represents whether the mode

 needs to be �ixed or not,  if the mode needs to be �ixed.
 is the maintenance time of mode  . The expression for the total

time consists of two parts, as shown in Eq. (12.1). The �irst term

stands for transportation time, and the second one
 represents maintenance time.

The parameters  and  represent the unit transportation cost and
the unit maintenance cost. The transportation cost

and maintenance cost  of all

modes make up the total cost (i.e., Eq. (12.2)).

(12.1)

(12.2)



In terms of constraints, the following constraints are often
considered: transportation constraints, time constraints, material
balance constraints, inventory constraints, vehicle constraints, and the
maintenance constraints for transportation modes.

12.3.2	 Solving	Method
For a multi-objective problem, the result of one objective may not satisfy
the optimality of other objectives, so the solution result may not satisfy
the situation that all objective functions are optimal solutions at the
same time. A compromise between objectives is required to make each
objective in the model as optimal as possible [7]. The multi-objective
optimization solutions obtained in this way are a set of non-unique
Pareto optimal solutions. Pareto optimality means that at least one
objective function is improved without making any objective function
worse. In order to generate a subset of Pareto sets, the augmented  -
constraint method (AUGMECON) [8] is used in this chapter. The other
objective functions are converted into constraints in AUGMECON, so
only one objective function will be optimized. The mathematical
expression of AUGMECON is shown in Eq. (12.3).

(12.3)

The objective functions in multi-objective programming are
represented by  ,  , …,  , respectively, the surplus



variables  ,  , …,  introduce in the constraints,  ,  , …,  are the
relevant iteration parameters, and eps is a distribution smaller value
between 10−3 and 10−6.

This chapter proposes a bi-objective model, where 
corresponds to Eq. (12.1) and  corresponds to Eq. (12.2). Firstly, by
solving function  as a single-objective function, its range can be
obtained. Then, the objective function  is divided into equal
amounts to obtain q equidistant iteration parameters. Finally, the
obtained parameters are substituted into the original bi-objective model
to obtain the Pareto set.

12.3.3	 Robust	Optimization
This chapter adopts the robust optimization method to solve the data
uncertainty problem. Compared with other methods, the robust
optimization method only needs to search for the distribution that
satis�ies the conditions to �ind the optimal solution, thus avoiding the
need to master the speci�ic distribution of the uncertain set. This
chapter uses the  -robustness approach to solve the mathematical
model [9]. Assuming that the uncertain demand in this model �luctuates
in an interval, by introducing disturbance parameters and adjusting
control parameters according to uncertain factors, the optimality and
robustness of the understanding are guaranteed.

When a linear model contains constraints with uncertain
parameters, its mathematical expression is usually as follows:

(12.4)

 represents the variable, the certain parameter is represented by  ,
 is the uncertain parameter, and  represents the set of the

uncertain parameters. Assuming that  is a random number whose
value range is between  , where  represents a

maximum deviation from the mean value  .
In order to solve the model, the disturbance parameters and scale

deviations  need to be de�ined �irst. This
chapter assumes that the maximum deviation of the total scaled



deviation is  .  is a parameter that varies from the

range  . If  , the robust model be a model without
uncertainty, and if  , the solved target model is treated as an
absolutely robust optimization model. Therefore, it is necessary to
adjust the parameter  to control the disturbance range, and it should
ensure that the value of  can conform to the characteristics of the
initial stage of the emergency. The constraint (12.4) is transformed into
a constraint (12.5) by introducing a protection function  . Under
the transformation of the above model, it can obtain the value of the
protection function  . Due to the effect of the nonlinearization of
constraint (12.5), linearization is required using the strong duality
theorem of SP1 duality.

(12.5)

(12.6)

Using the above method, the original model is transformed into a
robust model that takes into account demand uncertainty. Solving the
model can get an oil emergency dispatch scheme considering demand
uncertainty.

12.4	 Case	Study
12.4.1	 Basic	Data
Since the occurrence of earthquake disasters will have a serious impact
on many areas, the facilities and traf�ic routes along the line will be
damaged to varying degrees, resulting in an increase in the demand for
emergency resources. Therefore, it is urgent to formulate a reasonable



emergency dispatch plan for petroleum products to ensure the safety
and stability of rescue operations.

This chapter takes the earthquake that occurred in Sichuan, China, in
2008 as a case background. Figure 12.2 shows the downstream oil
supply chain system near the disaster area. There are 10 disaster areas
(D1-D10) in the picture that need emergency supplies, which include
different petroleum products (O1-O2). Petroleum products can be
supplied from six nearby supply depots (S1-S6), while two re�ineries
(R1-R2) can also be responsible for supplying emergency petroleum
products. There are three pipelines under this system. The �irst one goes
from R1 to D2, via D4. The second pipeline runs from R2 to D9, via D8,
D1, and D5. The last one is S4-S3-S2-S6-D10, in which there are three
branches, S4-D6, S2-D2, and S3-D3. Two of the pipelines (S2-D2 and S4-
D6) are damaged due to the disaster. The system scheduling period in
this case is 6 days. Assuming that each re�inery and supply depot can
process suf�icient oil products, the daily demand and consumption of
each oil product in each disaster area is the same, and the scheduling
time of each disaster area does not exceed 24 h.

Fig.	12.2  Distribution map of supply and disaster points



Earthquakes may cause varying degrees of damage to various modes
of transportation. This chapter divides the degree of earthquake damage
to highways into three levels by the different parameter  and  .
When the damage degree  is less than  , it is assumed to be
slightly damaged, and the oil can still be transported by highways. When
the degree of damage is greater than  but less than  , it is assumed to
be severely damaged, and only when the road returns to its normal
function can the highways be used for transportation. When the damage
degree is greater than  , it is considered that the highway cannot be
repaired to the normal transportation state, and the transportation
mode is considered to be completely destroyed. Similarly, the damage
degree of the railway  is also divided into three grades according to
the above classi�ication.

This chapter will analyze two types of cases in this region. Case 1 is a
multi-objective planning problem with determination of the needs of the
disaster area, solved by AUGMECON. Case 2 considers the uncertainty of
demand in the disaster area on the basis of case 1 and adopts the robust
optimization method to solve the model.

12.4.2	 Case	1
In this case, the demand of each disaster site is determined and assumed
to be the average demand of the disaster area. This chapter adopts the
AUGMECON method to solve the bi-objective optimization problem of
demand determination. By �irst solving the objective function  , the
range of  is obtained, and the range is equally divided into equal
intervals. Substitute each value in the objective function  into the
model to solve, and then the value corresponding to  can be
obtained.

Figure 12.3 shows the relationship between the objective functions
 and  . The left and right vertical axes represent total cost and

total time, respectively. The horizontal axis represents each valid Pareto
solution. It can be found that the total cost decreases as the total time
increases, and the �inal time approaches a �ixed value. The �irst objective
of oil emergency dispatching is to transport the needed oil to the
destination within a speci�ied time range, and then consider the total
cost of the transportation process on this basis. It can be seen from the



�igure that the objective function  begins to converge at the 6th
group of Pareto solutions. By comparison, it can be found that for the
objective function  (the total time), the difference between the 6th
group of solutions and the subsequent solutions is small, but the
objective function  (the total cost) of the subsequent solutions is
higher than that of the 6th group. Therefore, this chapter chooses the
sixth group as the �inal plan of case 1.

Fig.	12.3  Pareto solution distribution of f1 and f2

As shown in Fig. 12.4, the scheduling scheme is different for each day
in a cycle. Taking into account the cost gap between different
transportation modes and the overall scheduling time, it can be found
that when the disaster area is close to the supply depot and the demand
is small, it is more economical to use road transportation products. On
the contrary, when the disaster area is far away from the supply depot
and the demand is large, pipelines can be used in order to be more cost-
effective. In addition, railways can be used as a way to supplement the
needs of disaster areas, suitable for long-distance disaster areas. When t 
= 1, since most of the highway and railways are damaged, the supply
point mainly transports petroleum products to the affected areas
through pipelines. The pipelines and railways leading to D7 were
damaged, so only oil products can be transported by road. When t = 2,



the damaged road is repaired. For disaster areas such as D4, products
can be supplied to disaster areas by more transportation modes such as
road and rail, so as to reduce the transportation cost. The railway is
mainly to supplement the remaining demand in the disaster area. The
analysis of the scheduling plan for the remaining four days is the same
as the above two days. Oil cannot be transported to these areas by road
as some of the roads are completely destroyed and cannot be repaired
within a dispatch cycle, the delivery of oil to these areas cannot be done
by highways. For pipeline and railway, pipelines can transport more oil
at a lower cost, so the pipeline is the �irst choice for the above disaster
areas.

Fig.	12.4  Detailed scheme

12.4.3	 Case	2
In case 1, the complexity of the model is reduced by averaging the
requirements over a period. But in reality, the demand for all kinds of oil
in disaster areas is often uncertain. The actual situation is that when the
demand deviates from the mean value, the solution result will be quite
different from the optimal result, and the solution scheduling time or
cost will increase. Therefore, the demand uncertainty in each disaster



area is considered in case 2. In this case, the problem is solved by using
AUGMECON combined with robust optimization.

Different from the demand deterministic model of case 1, some
additional parameters are added to the model, including  , 
and the control parameter  representing the conservative level. As
the control parameter  , the value range of it is de�ined

 in this chapter. In this chapter, the upper
perturbation parameter  and the lower

perturbation parameter  are de�ined to represent

the upper and lower limits of demand variation, respectively, and each
uncertain parameter is assumed to vary around its mean value.
Depending on the research problem, the value of the perturbation
parameter will also vary. Therefore, the disturbance parameters are
determined empirically by need. This chapter de�ines  ,

 . Therefore, the demand of each disaster site 

will vary on the interval  .

Compared with case 1, this case has undergone signi�icant changes
in the scheduling scheme. Figure 12.5 shows that Case 2 also has a
different daily schedule over a period. When t = 1, pipelines are the main
way of transporting oil from supply points to disaster areas. The only
way to supply D7 is by road. In case 2, uncertainty in demand results in a
change in the number of tankers sent from the supply point. In case 1,
S3 sends 27 tankers to D7, while in case 2, S3 sends 25 tankers to D7.
When t = 2, the damaged road will be repaired, and the disaster areas
such as D4 can be supplied with oil by highway or railway. Due to
uncertainty, the demand for petroleum products in the disaster areas in
case 2 and case 1 is inconsistent. Although the scheduling scheme
obtained in case 1 can be substituted into case 2, the total time and total
cost of this scheme are not optimal results. Therefore, case 2 requires a
scheduling scheme with less time and less transportation cost.



Fig.	12.5  Detailed scheme

For example, from the results of case 1, it can be found that the D4
disaster area can receive gasoline from S3, S6, and R1, and the
transportation modes include rail, road, and pipeline. But as the demand
changes, only R1 supplies gasoline to D4 through the pipeline in case 2,
resulting in a reduction in dispatch time. Similarly, when t = 3, S4
supplies gasoline to D6 by highway in case 1. While in case 2, R2
supplies gasoline to D6 by pipeline. The demand for gasoline in D6 has
increased due to changes in demand in various disaster areas due to
uncertainty. Due to the impact of demand uncertainty, the demand of D6
for gasoline increases. It can be found that the scheduling scheme given
in case 2 not only reduces the scheduling time, but also reduces the
transportation cost compared with the previous one.

In case 2, considering the uncertainty of the demand in the disaster
area, the total supply of different transportation modes to the disaster
area can still meet the demand in a period.

12.5	 Conclusion



Considering demand uncertainty and path effectiveness, a bi-objective
MILP model for post-disaster emergency dispatch of petroleum
products based on robust optimization is proposed with minimum total
time and minimum cost as objective functions in this chapter. The time
mainly considers the transportation time of the product and the
maintenance time of the transportation method, and the cost includes
the transportation cost of oil and the maintenance cost of the
transportation method. AUGMECON combined with robust optimization
method was used to solve the model.

This chapter presents two sets of cases to validate the proposed
model. Under the conditions of demand certainty in case 1 and
uncertainty in case 2, the solution is obtained, and a scheme that
satis�ies the scheduling period is obtained. In a multi-objective model, it
is not possible to optimize all objective functions simultaneously. A
reduction in total cost in this model results in an increase in total time.
The model can provide effective decision-making basis for oil
emergency dispatching under uncertain demand and greatly improve
the robustness and economy of emergency dispatching. There are
multiple modes of transportation between the supply point and the
disaster area, and the choice of route will also affect the transportation
plan.
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